

Systemic Risk from Derivatives: Network Analysis

PRESENTATION:
ALI RAIS SHAGHAGHI
JOINT WORK WITH
PROF. SHERI MARKOSE
FEB 2011

Outline

- Financial Derivatives Market and Systemic Risk
- Network Analysis of US Financial Derivatives Market
- Contagion Analysis
- Concluding Remarks and Further Work

Financial stability and systemic risk

- The recent financial crisis has emphasized the importance of contagion and systemic risk, defined as risk which can influence the stability of the financial system as a whole
- Control over systemic risk has been the main motivation of the recent bailouts of large financial institutions
- Regulators have had great difficulties anticipating the impact of defaults partly due to a lack of visibility and lack of relevant indicators on the structure of the financial system

\$603 Trillion Dec 2009 OTC Derivatives

• When compared to the size of world GDP at \$70 tn, and size of the global bond market (total debt outstanding) at about \$82 tn, the implication is that the size of off balance sheet activities of financial intermediaries (FIs) has grown to many multiples of their assets and derivatives obligations of FIs under conditions of market wide adverse movements on the underlying (such as interest rates, house prices, exchange rates, external debt of countries including sovereign debt) could overwhelm the equity and assets of FIs.

• Indeed, the key structural aspect of the networks underpinning financial derivatives has been summarized in the 2009 Fitch survey: "dependence on a limited number of counterparties looks to be a permanent feature of the market; this is underscored by the fact that the top 12 counterparties comprised 78% of total exposure in terms of the number of times cited, up from the 67% reported last year. The top five institutions that provided volume figures accounted for 95% of total notional amount bought and sold. This concentration is a reflection of the dominant role of banks and dealers as counterparties, particularly after the collapse of a limited number of financial institutions who were important intermediaries in this market."

http://www.scribd.com/doc/37557210/Fitch-Market-Research-Global-Credit-Derivatives-Survey-09162010.

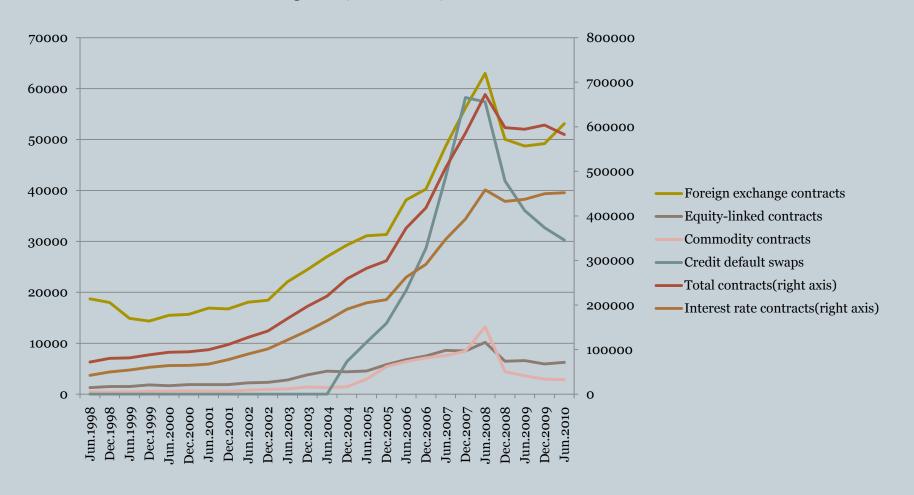
• These are Goldman Sachs, JP Morgan Chase, Barclays, Bank of America, Deutsche Bank, Morgan Stanley, Credit Suisse, BNP Paribas, UBS, Bank of America, Merrill Lynch, Royal Bank of Scotland.

Derivative Dilemmas

• The degree to which derivatives had created a dangerously interconnected financial system became clear amid the collapse of **Bear Stearns, Lehman Brothers** and **AIG** in 2008. A default by one bank at the centre of a tangled web of derivatives contracts could paralyse the entire financial system, because the derivatives could become worthless if the bank writing the contract went under.

http://www.ft.com/cms/s/o/fa3794be-a57b-11df-a5b7-00144feabdco.html#axzz1E4jpq2G1

Notional amounts outstanding: Bns(source BIS)

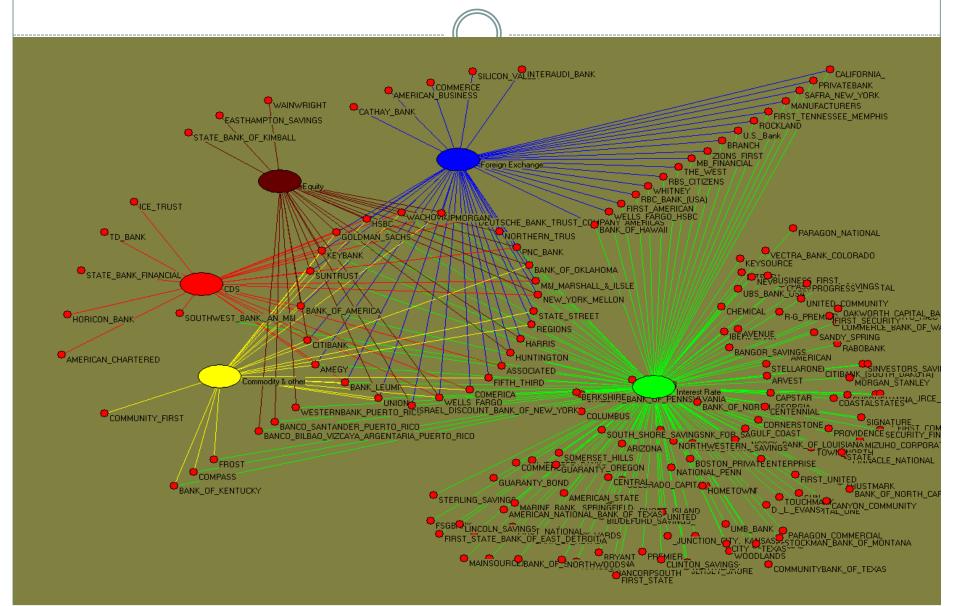


US Banks With Derivative Positions(\$):2009 Q4 FDIC Data

F.I.Name	IR	F.I.Name	FX	F.I.Name	Equity	F.I.Name	Commodity	F.I.Name	CDS SOLD GN	F.I.Name	Total
JPMORGAN	63,382,511,000	JPMORGAN	7,082,377,000	JPMORGAN	1,238,114,000	JPMORGAN	738,168,000	ICE	3,301,673,718	JPMORGAN	75,381,081,000
GOLDMAN	39,278,924,000	CITIBANK	3,856,043,000	ВоА	162,675,418	CITIBANK	58,800,000	JPMORGAN	2,939,911,000	ВоА	42,222,864,886
BoA	37,849,749,439	ВоА	2,240,063,347	CITIBANK	161,300,000	STATE STREET	52,947,641	ВоА	1,964,463,832	GOLDMAN	41,118,442,000
CITIBANK	30,920,952,000	GOLDMAN	1,493,888,000	WACHOVIA	50,275,000	WACHOVIA	47,263,000	CITIBANK	1,089,611,000	CITIBANK	36,086,706,000
WACHOVIA	1,981,439,000	HSBC USA	573,909,305	HSBC USA	24,150,553	HSBC USA	28,055,496	HSBC USA	372,604,526	ICE	3,301,673,718
HSBC USA	1,489,008,938	STATE_STREET	567,798,875	FARGO	20,847,000	FARGO	23,450,000	GOLDMAN	339,144,000	HSBC USA	2,487,728,818
NY MELLON	1,033,472,000	NY MELLON	234,277,000	SUNTRUST	10,252,532	GOLDMAN	6,168,000	WACHOVIA	85,699,000	WACHOVIA	2,263,355,000
FARGO	960,528,000	NORTHERN	163,587,384	NY MELLON	7,653,000	ВоА	5,912,850	KEYBANK	1,916,952	NY MELLON	1,275,404,000
SUNTRUST	178,222,685	WACHOVIA	98,679,000	HARRIS	816,666	OKLAHOMA	5,583,549	PNC_BANK	542,000	FARGO	1,073,469,000
PNC	124,850,181	FARGO	68,304,000	PNC	343,956	UNION	3,405,389	FARGO	340,000	STATE STREET	622,692,567
Others	517,244,091	Others	58,711,625	Others	1,339,142	Others	5,100,690	Others	485,772	Others	1,070,136,563
Total	177,716,901,334	Total	16,437,638,536	Total	1,677,767,267	Total	974,854,615	Total	10,096,391,800	Total	206,903,553,552

Market	Mean (\$000s)	Standard	Skewness	Kurtosis	Max
		Deviation			
		(σ)			
IR	875,452,715.9	6,214,603,264.6	7.9	65.8	63,382,511,000.0
FX	80,973,588.8	595,760,179.8	9.7	103.5	7,082,377,000.0
Equity	8,264,863.4	88,307,824.6	13.6	188.9	1,238,114,000.0
Other	4,802,239.5	52,188,019.6	13.9	195.8	738,168,000.0
CDS	49,735,920.2	347,192,019.0	8.0	65.8	3,301,673,718.0
Total	1,019,229,327.8	7,131,250,614.2	8.1	71.0	75,381,081,000.0

Structure of Financial Derivatives Market: (2009, Q4): Green(Interest Rate), Blue (Forex), Maroon (Equity); Red (CDS); Yellow (Commodity); Circle Broker Dealers in all markets (Bi-partite Graph)



Use of Networks in Finance and Economics

- Relatively new but since the financial crises of 2008-2009 has received more interest
- Real world complex networks: unsuspected regularities across many domains, ranging from biology or computer systems to society and economics
- Universal or at least generic mechanisms are at work in the formation of many such networks
- (Estrada et al. 2010)

Levels of Network Analysis

- First: purely topological approach(best optimised by a binary adjacency matrix where links simply exist or not
- Second: allowing the links to carry weights, or weights and direction
- Third: the nodes themselves are assigned a degree of freedom or fitness

Type of Financial Networks

- It is important to understand which type of networks can be constructed for financial systems, and evaluating the imperial results on networks obtained by investigating large databases of financial data ranging from individual transactions in a financial market to strategic decisions at a bank level.
- In this regard there are three main type of networks that has been studied (Estrada et al. 2010)
- 1)Networks to extract information from *Correlation Matrices*
- 2)Networks of control as, for example, the *Ownership Network* and the *Board of Directors* Network
- 3)Trading networks as the *World Trade Web* and the *Banks' Credit networks*

General Financial Network

- In general terms we can divide networks into similarity based networks and direct interaction networks
- Example for similarity based network: characterisation of the cross-correlation structure of price returns in stocks portfolio

Transaction Networks

• Interbank Networks and Bank-Firm Networks(Boss et al. Interbank market and payment system

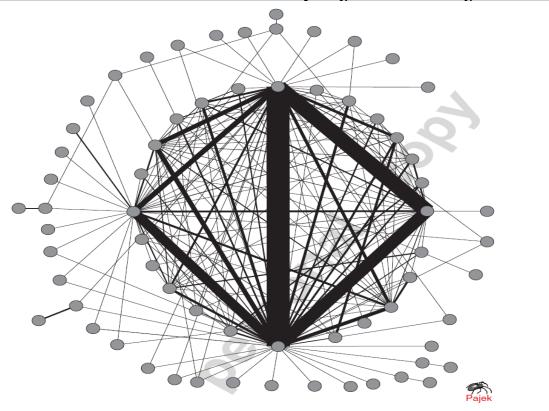
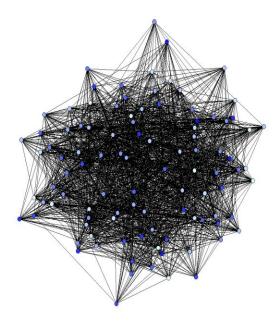
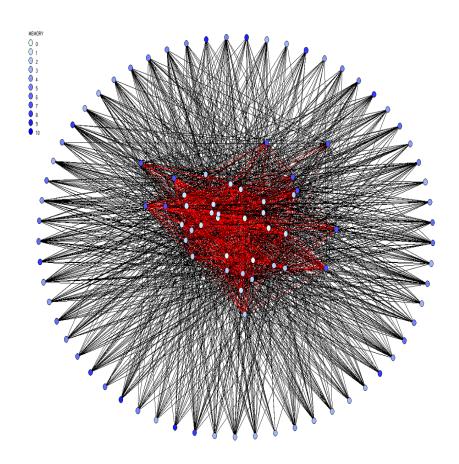


Fig. 2. Core of the Fedwire interbank payment network; largest undirected links totaling 75% of daily value transferred [39].

Some Network Concepts: A graphical representation of random graph (left) and small world graph with hubs, Markose et. al. 2004 High Assortative





Properties of Networks

Diagonal Elements Characterize Small World Networks
Watts and Strogatz (1998), Watts (2002) See Markose et. al.
(2004)

Properties	Clustering	Average Path	Degree
	Coefficient	Length	Distribution
Networks			
Regular	High	High	Equal and fixed In-degrees to each node
Random	Low	Low	Exponential/ Poisson
Scale Free/Power Law	Low	Variable	Fat Tail Distribution

University of Essex

Financial Networks for the Derivatives Obligations: High Clustering from broker dealer behaviour and Barabasi et. al. Preferential attachment model

• Our algorithm assigns in and out degrees for a bank in terms of its respective market shares (s_i^{B/G}) for Derivatives purchases(B) and Derivatives sales (G), resp. GNFV and GPFV

$$\mathbf{X} = \begin{bmatrix} 0 & x_{12} & x_{13} & ...x_{ij}. & & x_{1N+1} \\ x_{21} & 0 & x_{23} & & & x_{2N+1} \\ . & . & 0 & & ... & ... \\ x_{i1} & . & 0 & x_{iN+1} \\ . & . & . & 0 \\ x_{N+11} & ... & x_{N+1j} & 0 \end{bmatrix} \begin{bmatrix} \Gamma = \sum_{i} G_{i} \\ G_{1} \\ G_{2} \\ . \\ G_{i} \\ . \\ G_{N+1} \end{bmatrix}$$

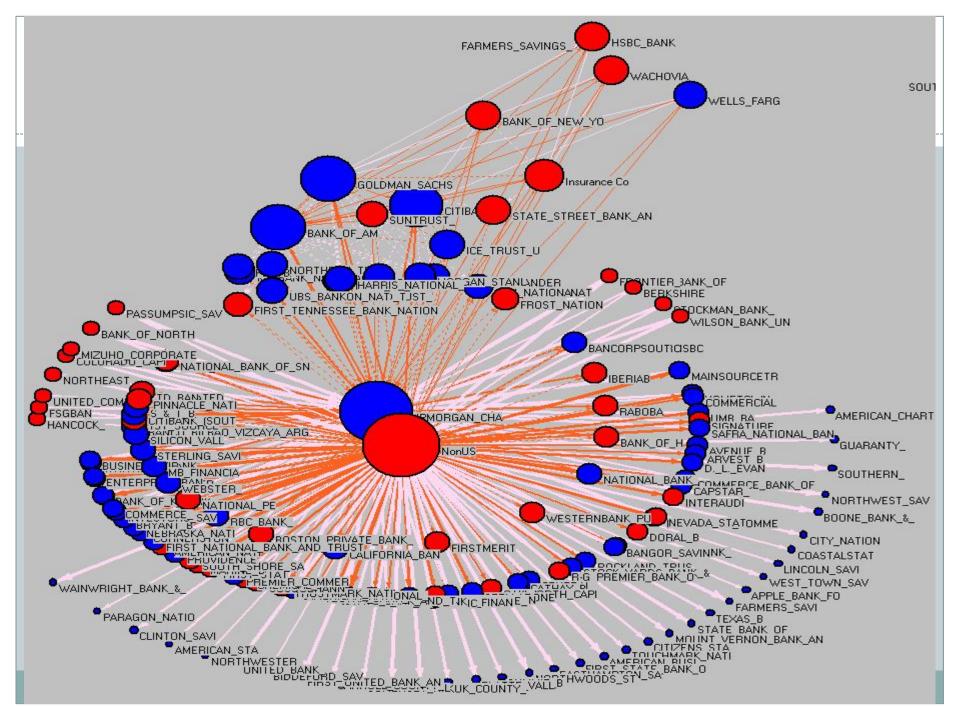
$$\Theta = \sum_{j} B_{j} \ B_{1} \qquad ... \qquad B_{j} \ \qquad B_{N+1}$$

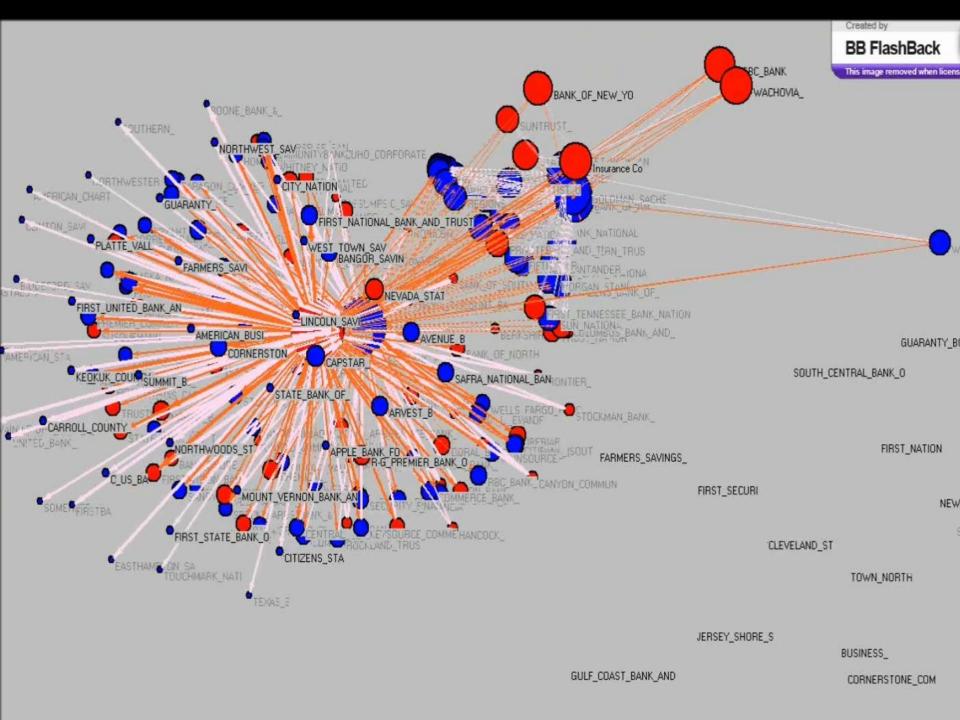
$$x_{ij} = \begin{cases} G^{i}s_{j}^{B} & \text{for the largest } (1 + Ns_{i}^{G}) \text{'s counterparties} \\ 0 & \text{otherwise} \end{cases}$$

Empirical Validation of Constructed Network

• The Table below gives the FDIC amount of assets and liabilities for a sample number of FIs compared to model estimated values derived from the network construction algorithm. The original bilateral payables and receivables are shuffled, so that the empirical bilaterally netted amounts are obtained.

FI Name	Actual Assets	Actual Liabilities	Model Estimated Assets	Model Estimated liabilities	
'JPMORGAN_CHASE_BANK'	72,008,000	64,340,000	53.96947572	20.63947572	
'BANK_OF_AMERICA'	29,452,150	8,471,760 38.92072465		18.41826065	
'CITIBANK'	58,966,000	46,986,000	34.96444539	18.73644539	
'HSBC_BANK_USA'	8,615,308	5,196,214	10.72017734	11.84431334	
'GOLDMAN_SACHS_BANK_USA'	22,662,000	12,040,000	98.1738958	35.1038958	
'WACHOVIA_BANK'	14,381,000	4,612,000	10.62476032	10.95076032	
'KEYBANK_NATIONAL_ASSOCIATION'	848,516	918,223	1.141161049	1.046082049	
'PNC_BANK'	595,504	322,404	1.46812615	1.45225215	
'WELLS_FARGO_BANK'	7,023,000	4,350,000	5.838533597	4.349533597	





Contagion

• The first step to measuring credit exposure in derivative contracts involves identifying those contracts where a bank would lose value if the counterparty to a contract defaulted today. The total of all contracts with positive value (i.e., derivatives receivables) to the bank is the gross positive fair value (GPFV) and represents an initial measurement of credit exposure. The total of all contracts with negative value (i.e., derivatives payables) to the bank is the gross negative fair value (GNFV) and represents a measurement of the exposure the bank loses to its counterparties.(2009 OCC Derivatives Report)

Too Interconnected To Fail: Stress Test

Objective: Build Derivatives Network and Conduct Stress Tests

There is very high correlation between the dominance of market share in Derivatives market and network connectivity

- Stress Tests: Follow Furfine (2003) Algorithm
- We use 2% reduction of Tier 1 capital to signal bank failure
- Experiment: (A) The loss of derivatives payables due to the failed bank as counterparty suspending its guarantees will have a contagion like first and multiple order effects. Full bilateral tear up assumed; No possibility for Novation

NET EXPOSURE > 2% Tier 1 Capital

												Wells	
		JPMorgan		ВоА		Goldman		CITI		ICE		Fargo	KeyBank
Financial_Institution_Na Tier 1		Loss(\$)in	0/	Loss(\$)in		Loss(\$)in		Loss(\$)in	0/	Loss(\$)in	0/		
me	capital	bn	%	bn	%	bn	%	bn	%	bn	%		
JPMORGAN_CHASE	96.372	-96.372	100.000%	-1.423	-1.477%	-9.706	-10.071%	-10.331	-10.720%	-0.036	-0.037%	0	0
BANK_OF_AMERICA	111.916	-0.271	-0.242%	-111.916	100.000%	-0.271	-0.242%	-0.271	-0.242%	-0.022	-0.020%	0	0
GOLDMAN_SACHS	17.152	-18.617	- 108.544%	-10.940	-63.783%	-17.152	- 100.000%	-8.306	-48.425%	-0.068	-0.395%	0	0
CITIBANK,_N.A.	96.833	-0.401	-0.414%	-0.115	-0.119%	-0.401	-0.414%	-96.833	-100.000%	-0.017	-0.018%	0	0
ICE_TRUST_U.SLLC	0.046	0.000	0.000%	0.000	0.000%	0.000	0.000%	0.000	0.000%	-0.046	-100.000%	0	0
HSBC_BANK_USA	13.354	-9.664	-72.373%	-10.720	-80.279%	-9.664	-72.373%	-9.664	-72.373%	0.000	0.000%	0	0
WACHOVIA_BAN	39.786	-9.503	-23.886%	-10.625	-26.705%	-9.503	-23.886%	-9.503	-23.886%	0.000	0.000%	0	0
NEW_YORK_MELLON	10.149	-2.368	-23.335%	-2.662	-26.231%	-2.368	-23.335%	-2.762	-27.219%	0.000	0.000%	0	0
WELLS_FARGO_BANK	43.765	-2.810	-6.422%	-2.632	-6.014%	-2.379	-5.436%	-2.775	-6.340%	0.000	0.000%	0	0
STATE_STREET_BANK	11.378	-0.920	-8.088%	-0.953	-8.378%	-0.920	-8.088%	-1.073	-9.434%	0.000	0.000%	-43.765	0
SUNTRUST_BANK	11.973	-0.560	-4.673%	-0.852	-7.115%	-0.560	-4.673%	-0.653	-5.451%	0.000	0.000%	0	0
NORTHERN_TRUST	4.756	-0.291	-6.122%	-0.443	-9.321%	-0.291	-6.122%	-0.340	-7.141%	0.000	0.000%	0	0
PNC_BANK	24.491	-0.398	-1.625%	-0.606	-2.474%	-0.398	-1.625%	-0.862	-3.520%	0.000	0.000%	0	0
KEYBANK	8.090	-0.323	-3.995%	-0.463	-5.725%	-0.304	-3.760%	-0.355	-4.386%	0.000	0.000%	0	-8.090
REGIONS_BANK	10.577	-0.212	-2.008%	-0.463	-4.379%	-0.212	-2.008%	-0.248	-2.342%	0.000	0.000%	0	0
U.SBANK	16.250	-0.170	-1.044%	-0.404	-2.486%	-0.170	-1.044%	-0.347	-2.135%	0.000	0.000%	0	0
FIFTH_THIRD_BANK	13.575	-0.143	-1.055%	-0.361	-2.662%	-0.143	-1.055%	-0.310	-2.287%	0.000	0.000%	0	0
UNION_BANK	7.207	-0.095	-1.320%	-0.237	-3.292%	-0.095	-1.320%	-0.204	-2.827%	0.000	0.000%	0	0
RBS_CITIZENS	8.237	-0.179	-2.177%	-0.191	-2.323%	-0.179	-2.177%	-0.272	-3.305%	0.000	0.000%	0	0
BRANCH_BANKING	13.544	-0.072	-0.533%	-0.169	-1.247%	-0.072	-0.533%	-0.150	-1.109%	0.000	0.000%	0	0
BANK_OF_OKLAHOMA	1.079	-0.051	-4.767%	-0.078	-7.259%	-0.051	-4.767%	-0.060	-5.561%	0.000	0.000%	0	0
DEUTSCHE_AMERICAS	8.289	-0.689	-8.307%	-0.466	-5.627%	-0.306	-3.696%	-0.357	-4.311%	0.000	0.000%	0	0
HUNTINGTON	2.873	-0.051	-1.790%	-0.063	-2.200%	-0.051	-1.790%	-0.090	-3.130%	0.000	0.000%	0	0
COMERICA_BANK	5.763	-0.072	-1.249%	-0.166	-2.874%	-0.072	-1.249%	-0.142	-2.468%	0.000	0.000%	0	0
MANUFACTURERS	4.988	-0.055	-1.111%	-0.120	-2.414%	-0.055	-1.111%	-0.103	-2.073%	0.000	0.000%	0	0
Total US Banks	705.221												
No of Banks Failed		18		32		18		32		1		1	1
Tier1 Capital loss for top 25		-144.290		-157.071		-55.326		-146.012		-0.189		-43.765	-8.090
Total Tier 1 Capital Loss		-151.809		-159.899		-62.837		-153.585		-0.189		-43.765	
						52.007				0.235			3.000

Conclusion and Future Work

- "Systemic risk involves understanding structure and dynamics of complex financial networks. Efficient methods for large scale simulation and optimization of these networks provide better insight than simplistic equilibrium models based on homogeneous network structures" (Rama Cont)
- The extension of the current model will focus on global derivatives market specifically the addition of European institutions.
- Also the current aggregate model could be extended to the activity of financial intermediaries in multiple markets, for this the theory of hyper-networks could be utilised