The Generalized Extreme Value (GEV) Distribution,
Implied Tail Index and Option Pricing

Sheri Markose and Amadeo Alentorn

This version: 16 December 2010
Forthcoming Spring 2011 ifhe Journal of Derivatives

Abstract

Crisis events such as the 1987 stock market ctiastfsian Crisis and the collapse of Lehman
Brothers have radically changed the view that ex¢revents in financial markets have negligible
probability. This article argues that the use ef @eneralized Extreme Value (GEV) distribution to
model the implied Risk Neutral Density (RND) furmtiprovides a flexible framework that captures
the negative skewness and excess kurtosis of sgtanal also delivers the market implied tail index.
We obtain an original analytical closed form salatfor the Harrison and Pliska [1981] no arbitrage
equilibrium price for the European option in thee@f GEV asset returns. The GEV based option
pricing model successfully removes the in-sampieiqy bias of the Black-Scholes model, and also
shows greater out of sample pricing accuracy, wieitgiiring the estimation of only two parameters.
We explain how the implied tail index is efficactoat modelling the fat tailed behaviour and negativ

skewness of the implied RND functions, particulaipund crisis events.



The last two decades have been marked by crisig®irefinancial markets. These include
the 1987 stock market crash, the Asian Crisis (JDbtober 1997), the September 1998 LTCM
debacle, the bursting of the high technology DotaCGmubble of 2000-02 with about 30% losses of
equity values, events such as 9/11, sudden cospoadibpses of the magnitude of Enron and Lehman
Brothers, and most recently, the 2007/08 credéi<ivhich has been considered to be the greatest
since the Great Depression. There has been a katiftain the view held by policy makers, finance
academics and practitioners who now feel that engrevents in financial markets cannot be ignored as
outliers with negligible probability. In mainstredmancial theory, extreme events which occur with
small probabilities have not been a matter of comes in the dominant model of lognormal asset
prices the probability of extreme events such asstbck market crash of October 1987 is virtually
non-existent. There has been a growing pragmatic and theoredifilin interest from the modelling
of ‘normal’ asset market conditions to the shape fatness of the tails of the distributions of &sse
returns which characterize statistical models fdreame events.

Extreme value theory is a robust framework to aselpe tail behaviour of distributions.
Extreme value theory has been applied extensivehydrology, climatology and also in the insurance
industry. Embrechts et. al. [1997] is a comprehansburce on extreme value theory and applications.
Despite early work by Mandelbrot [1963] on the ploisy of fat tails in financial data and evidence
on the inapplicability of the assumption of log madity in option pricing, a systematic study of
extreme value theory for financial modelling arsknimanagement has only begun recehtly.

The objective of this article is to use the Gerieeal Extreme Value (GEV) distribution in the
context of European option pricing with the viewowercoming the problems associated with existing
option pricing models. Within the Harrison and Rdi§1981] asset pricing framework, the risk neutral
probability density (RND) function exists underassumption of no arbitrage. By definition of a no
arbitrage equilibrium, the current price of an ass¢he present discounted value of its expeatéuat
payoff given a risk-free interest rate where thpeetation is evaluated by the RND function. Breeden
and Litzenberger [1978] were first to show how RiD function can be extracted from traded option
prices. The Black-Scholes [1973] and lognormal 888§D models have well known drawbacks.
First, the implied volatility smiles or smirks a@reonsistent with the constancy required in the
lognormal case for volatility across different lsés$ for options with the same maturity date. Furthe
this class of models cannot explicitly accounttfar negative skewness and the excess kurtosisef as
returns. Since, Jackwerth and Rubinstein [1996]alestnated the discontinuity in the implied
skewness and kurtosis across the divide of the $8&8k market crash - a large literature has
developed which aims to extract the RND functiamnfrtraded option prices so that the skewness and
fat tail properties of extreme market events ateebeaptured than is the case in lognormal models.

Pricing biases caused by left skewness of assgneethat cannot be captured in the implied

lognormal asset pricing models are now well undedtisee,Corrado and Su [1996,1997], Savickas

! As noted by Jackwerth and Rubinstein [1996] ingnbrmal model of assets prices, the market crast9dctober 1987 with
a 29% fall of S&P 500 futures prices has a prolitgtof 10", an event which is unlikely to happen even inlifeetime of the
universe.

2 Embrechts et. al. [1999], Mc Neil [1999] and Erris [2000] consider the potential and limitatiofextreme value theory
for risk management. Dowd [2002] gives a good aotofithese developments and a recent survey oérextvalue theory for
finance can be found in Rocco [2010].



[2002]). Typically, in periods when the left skevsseof asset prices increases, the Black-Scholes
model will overprice out-of-the-money call optiomsd underprice in-the-money call options relative
to when there is greater symmetry in the distrirufunction. This article shows how the option pric
is highly sensitive to changes in the tail shapgctvis distinct to its sensitivity to the varianckthe
returns distribution. We find that the traded optgice implied GEV model for the RND yields result
that strongly challenge traditionally held viewstail behaviour of asset returns based on Gaussian
distributions which predicate simultaneous existentcthin tails in both directions during all marke
conditions. The GEV distribution, which is goverrigdthe tail shape parameter, is found to switdh ta
shape with underlying market conditions. Duringrete market drawdowns, a positive value for the
tail shape parameter results in significant skewieshe probability mass of the GEV density fuoeti
for losses and implies extreme price drops withizinge probability mass on the right and a truntate
tail in the other direction, implying an upper bdun possible gains. To date, proposed optionmyici
models intended to deal with both the fat tail #melskew in asset returns have failed to highligat
above characteristic features of fat tailed distigtns. They have also run into problems rangiognfr

a lack of closed form solution, a large numberarfgmeters needed or the lack of easy interpretafion
implied parameters. These factors have preventey wicthese models from being of practical use in
pricing and hedging options or in risk managementktreme market conditions.

This article argues for the use of the Generaligtleme Value (GEV) distribution for asset

returns in an option pricing model for the follogireasons:

0] It can provide a closed form solution for the Ewgap option price.

(i) It yields a parsimonious European option pricingdelpwith only two parameters
to estimate, the tail shape parameter and the peataneter.

(iii) It provides a flexible framework that subsumesmecal cases a number of
classes of distributions that have been assumeddt&oin more restrictive settings.
The GEV distribution encompasses the three massekof tail behaviour
associated with the Fréchet type fat tailed distridms and the thin and short
tailed Weibull and Gumbel classes.

(iv) When the GEV distribution is of Fréchet type, ihibits a fat tail on the right and
a truncated tail on the left. Since extreme econdasises are more probable than
extreme economic gains, we adopt the Fréchetldigtoin to model extreme
losses. To this end, we follow the practice ofitteirance industry, Dowd [2002,
p 272], and model returns as negative returns. isalt, when extreme events
are prominent, the GEV model yields a Fréchet tymaied density function for
negative returns, signifying higher probabilitidgpdce drops.

(v) Most significantly, the GEV option pricing modelrcdeliver the market implied
tail index for asset returns. It is important tgpitae market perception of fat tailed
behaviour in asset returns in a manner which ergpersed with thin and short
tailed Gumbel and Weibull values for the tail indelich characterize more
normal market conditions. Hence, the market impiatindex is found to be time

varying in a way that mirrors the lack of invariaria the recursively estimated



tail index of asset returns (see, Quintos, FanRmtips [2001]) with jumps in the
fat tailedness in crisis periods.

(vi) We show how the GEV option pricing model removeswiell known pricing
biases associated with the Black-Scholes, by cigttine time varying levels of
skewness and kurtosis. We also show how the GE\emgaelds superior pricing
accuracy out of sample, as GEV implied RNDs areencapable of capturing
extreme market conditions than other option pricimagels.

(vii) Having obtained a closed form solution for the optpricing model, we can also
obtain a closed form solution for the new “greek'lie lexicon of option pricing,
which measures the sensitivity of the option ptaéhe tail index.

(viii) The closed form delta hedging formulation can dls@iven.

This article covers the first six features listéabee of the GEV RND model of option pricing

and we leave the last two for further work.

We will now briefly comment on how the GEV RND bdsaption pricing model fits into the
large edifice, given in Exhibit 1 below, built frothe different methods used for the extractiorhef t
implied distributions and their respective optiaiting models that have arisen since the work of
Breeden and Litzenberger [1978]. Based on Jackvj&®99] survey, the different methods can be
classified into three main categories: paramesgoyi parametric and non-parametric. Parametric
methods can be divided into three sub-categor@Eseiglized distribution methods, specific
distributions and mixture methods. Generalizedithistion methods introduce more flexible
distributions with additional parameters beyondtthe parameters of the normal or lognormal
distributions. Within this subcategory, Apariciodadodges [1998] use generalized Beta functions of
the second kind, which are described by four patarsgand Corrado [2001] uses the generalized
Lambda distribution. Under the specific distribusaoeing assumed for the RND function, the Weibull
distribution is used by Savickas [2002], and thevedd Student-t by de Jong and Huisman [2000]. The
Variance Gamma distribution used by Madan, Carr@ang [1998], and Levy processes used among
others by Matache, Nitsche and Schwab [2004] are mezent specifications with these methods
having parameters that can control fat tails aredvsless of the asset price. Up to seven parameters a
associated with these models.

Finally, the third sub-category within parametrietirods is the mixture methods, which
achieve greater flexibility by taking a weightedrsaof simple distributions. The most popular method
here is mixture of lognormals. Ritchey [1990] aneh@nill and Saflekos [2000] use two lognormals,
and Melick and Thomas [1997] use three lognorn@ige problem associated with the mixture of
distributions is that the number of parameterssiglly large, and thus they may overfit the data. F
example, the mixture of two lognormals needs tovegte five parameters.

Under the category of semi parametric methodsHtfpergeometric function was used by
Abadir and Rockinger [1997], and expansion metlmath as the Gram-Charlier and Edgeworth
expansions, respectively, were used by Corradd&sand 996] and Corrado and Su [1997]. The non-
parametric methods can be divided again into threaps: kernel methods, maximum-entropy

methods, and curve fitting methods. Kernel methodplemented in Ait-Sahalia and Lo [1998], are



related to regressions since they try to fit a fiomcto observed data, without specifying a paraimet
form. Second, the methods based on maximum-entregg by Buchen and Kelly [1996] find a non-
parametric probability distribution that tries t@toh the information content, while at the samestim
satisfying certain constraints, such as pricingeobsd options correctly. In the third group in this
category, there are the curve fitting methods tityatio fit the implied volatilities with some flelie
function. The most popular of these is Shimko []9880o introduced the concept of smoothed implied
volatility smiles which involved fitting typicalla cubic or low order polynomial spline to obtaie th
middle portion of the RND function. The tails bEtRND function were modelled as log normal. This
approach was improved by Bliss and PanigirtzogRl0p] with the use of a “smoothing spline” whilst
retaining log normal tails. Figlewski [2010] maaie advance on this by appending tails from the GEV

distribution which are able to reflect extreme netrdonditions.

Exhibit 1
Classification of most common RND estimation methods

Generalized Beta functions (Aparicio and Hodge<9§1p |

Gen_era!lzed Generalized Lambda Distribution (Corrado [2001]) |
distributions
Generalized Extreme Value (GEV) distribution I
Weibull distribution (Savickas [2002]) |
. Specific Skewed Student-t (de Jong and Huisman [2000 |
__| Parametric distributions ( 9 [ D
methods
Variance Gamma (Madan et al [1998])
Lévy process (Matache et al [2004])
Mixture of two lognormals (Ritchey [1990]) |
Mixture
methods

Mixture of three lognormals (Melick and Thomas [199|

Hypergeometric functions (Abadir and Rockinger [299 |

Semi parametri¢
methods

Gram-Charlier expansions (Corrado and Su [1996]) |

Edgeworth expansions (Corrado and Su [1997]) |

Kernel methods (Ait-Sahalia and Lo [1998]) |

Non-parametri

methods Maximum entropy methods (Buchen and Kelly [1996]) |

Curve fitting methods (Shimko [1993], Figlewski [A1]) |




The model presented in this article, as highlighiteBxhibit 1, falls in the general category of
parametric models, and more specifically, withia sub-category of generalized distributions. Ireord
to estimate tail behaviour at high confidence Isvslich as 99%, many non-parametric methods for
RND estimation fail to capture tail behaviour oé tilistributions because of sparse data for options
traded at very high or very low strikes prices. elerparametric models have become unavoidable.
This, however, replaces sampling error with modedre In the next section, we give a brief
introduction to Extreme Value Theory and preseat@eneralized Extreme Value (GEV) distribution
and its properties to indicate how the flexibilifythis three parameter class of distributions can
capture skew and fat tails as and when dictatethdogata with n@ priori restrictions on the class of
distribution. This data driven selection of thit if@dex mitigates model error.

The rest of the article is organized as follows. dégelop the GEV option pricing model and
the closed form solutions for the arbitrage freedpean call and put option prices are derivedHer t
GEV based RND function. We then proceed to distussomponents of the closed form solution and
their theoretical properties in terms of moneyrasd then tail shape parameter. The empirical sectio
reports on the results for the estimated implied/GBD function and for its parameters based on the
FTSE 100 European option price data from 1997 @920The in sample fit of the postulated GEV
option pricing model is compared with the benchnBldck-Scholes one and is found to be superior at
all levels of moneyness and at all time horizoamaving the well known price bias of the Black-
Scholes model. Out of sample pricing tests showttieaGEV provides superior pricing performance
compared to Black-Scholes, for one day ahead fetec@he analysis of the time series charactesistic
of the implied tail index is given and the roleimplied RND functions in event studies surrounding
periods of “extreme” price falls of the FTSE-10@déx is also discussed. Finally, we make concluding

remarks and discuss future work.

EXTREME VALUE THEORY AND THE GEV DISTRIBUTION

Unlike the normal distribution that arises from tise of the central limit theorem on sample
averages, the extreme value distribution arises ftwe limit theorem of Fisher and Tippet [1928] on
extreme values or maxima in sample data. The ola&&V distributions is very flexible with the tail
shape parametér(and hence the tail index definedoast ™) controlling the shape and size of the tails
of the three different families of distributiondoswmed under it. These three families of distrimati
can be nested into a single parametric represenias shown by Jenkinson [1955] and von Mises
[1936]. This representation is known as the “Gelimrd Extreme Value” (GEV) distribution and is

given by:
Fe(X) = exr{— (1+ Ex)_”‘() with  1+&x>0, &#0 (1.a)

Applying the formula thafL+ & X) ™% — €™, asé - 0 we have:

F, (X)=exp(-e™) (1.b)



The standardized GEV distribution, in the form anwlises [1936] (see, Reiss and Thomas [2001], p.
16-17), incorporates a location paramegtand a scale parameter, in addition to the tail shape

parameter§, and is given by:

-1/¢
Fmg(x):exp{—(HEMj j with 1+£@>0 E#0 (2.a)

ag

and

(x=

)
Fouo (X)=€xpt-e 7 ) with £=0 (2.b)

The corresponding probability density functionsaoted by taking the derivative of the distribution

functions, are respectively:

-1-1¢§ -1 &
f{,y,a(x) :%(14_{@) ex _(14'5@) E;tO (3.a)
and

fo .0 (X) =%e_(x_”)/” exp(-e *'7) =0 (3.b)

We will now discuss how the tail shape parametedetermines both the higher moments of
the density function and also the skew in the pbdlby mass leading to truncation points in the
distribution. The tail shape paramete yields thin tailed distributions with the taiidexa= &*
being equal to infinity, implying that all momenibthe distribution are either finite or zefdheng
= 0, the GEV distribution belongs to the Gumbebsland includes the normal, exponential, gamma
and lognormal distributions, where only the lognafaiistribution has a moderately heavy tail. The
Gumbel class has zero skew in the probability maasksdisplays symmetry in the right and left tails.
Further, as seen in equation (2.b) there are ndittons truncating the distribution in either ditiea
for values of x. The distributions associated \gith O are called Fréchet and these include well know
fat tailed distributions such as the Pareto, Cawstd/Student-t distributions. Finally, in the cageere
£ < 0, the distribution class is Weib{IThese are short tailed distributions with finifgper bounds
and include distributions such as uniform and bigtibutions. In distributions for which# O, the
equality condition in equation (2.a) imposes a¢ation of the probability mass and a distinct
asymmetry in the right and left tails such that wiige probability mass is high at one tail sigmityi
non-negligible probability of an extreme eventhattdirection, there is an absolute maxima (or
minima) in the other direction beyond which valeés have zero probability. As shown in Reiss and
Thomas [2001], kurtosis of the Fréchet distributi@eomes infinite & > 0.25 (the tail indexq < 4),
and all higher moments including kurtosis and thbtrskew become infinite &> 0.33 (the tail

index,a < 3). Even for small positive values &fapproximately at abo@t= 0.1, the rate of growth of

® The general rule is that tn& and higher moments fail to be finitely integrallthe tail index is smaller tham Whené < 0, all
moments are finite or zero. However, wiierD, only moments up to the integer part of theitaex,o =1/&, exist with all
other moments being infinite.

4 Here we make reference to the Weibull distributisrdefined in the context of extreme value theBrgbrechts [1997, p154].
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skewness and kurtosis of the distribution, withhifaist approaching infinite growth, results in a
concentration of the probability density of the ¢frét distribution at the right tail. Thus, &icreases
with & > 0, the truncation points at the left tail at @fhihere is zero probability become more stringent.
Note forg < 0, for the Weibull class of distributions, thésencreased probability mass on the left tail
and a truncation point given by the inequality quation (2.a) at the right tail. However, it is Wwel
known (see, Reiss and Thomas [2001]) that at abeu.3, the Weibull distribution has zero skew
and is indistinguishable from a Gumbel distribution

As the probability of extreme economisdes are more likely than extreme gains, economic
losses are modelled as a Fréchet distribution gh probability mass on the right tail. Exhibit 2a
below illustrates the GEV density functions for atge asset returns for each of the three classes o
distributions that the GEV can take based on tla@alparametes. Note, that the three graphs only
differ in the value ot (the values considered fgare 0.3, 0, -0.3), having the same value for looat
(1=0) and scaled=0.2) parameters. The initial stock price is asalitnebe 100. The corresponding
density functions for the price in each of the ¢hecases for the tail shape parameter are shown in
Exhibit 3. Note, the left skew in the price dendiipction is greatest in Exhibit 3c, for the cadeewt
> 0, and the negative returns density function mgs$ao the GEV-Fréchet class. Given the value being
assumedg = 0.3, in Exhibits 2c and 3c, as noted above gtieemnfinite kurtosis and a very stringent
truncation on positive returns exceeding 0.667ottie prices to rise above 1666 Likewise, for
& =-0.3in(2.a,3.a), we have zero probabilityriegative returns to be greater than 0.667 and the
price to fall below 33.33. These upper and lowarrtats on returns and prices implied by the GEV
distribution play an important role in the analytsiat follows. As will be shown later, for the rangf
values for the implied tail shape parameters fod@@returns on the FTSE-100 index that we extract
on a daily basis from option prices over the sarppléod from 1997-2009, the maximum value we
obtain foré is +0.12. As this implies a tail index valuecof 8.33, it is clear that this guarantees finite
skewness and kurtosis for the risk neutral derfsitgtion for the entire sample period. Further, on
using equation (2.a), precise truncations valueeuthe RND Q- measure can be determined for the
levels of the stock index and for the returns oimithe context of the option pricing model it is
important to verify that the truncated values iraglby a GEV based RND, ie. Q-impossible events are
also not P-possible in terms of the empiricallylizeal values for prices and retuh$his will be

investigated in the next section.

Exhibit 2
Density functionsfor negative returns

® By rearranging the inequality in equation (2.a) asing the values being assumed for the GEV paeag)¢he truncation
values denoted by x* for negative returns in Exsil2.c, 3.c)) and (2.a,3.a) are determined frompe of &.
© We are grateful to Stephen Figlewski for bringihig to our attention.
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(@&=-0.3 (b)e=0 (c)g=+0.3
Notes: Density function of negative returns as nediéy the (a)GEV-Weibull, (b)GEV-Gumbel and
(c)GEV-Fréchet.

Exhibit 3

Density functionsfor prices

-

(@&=-0.3 (b)e=0 (c)g=+0.3
Notes: Corresponding density function for pricegrehnegative returns have been modeled as (a)
GEV- Weibull, (b) GEV- Gumbel and (¢) GEV- Fréchet.

THE GEV OPTION PRICING MODEL

Arbitrage Free Option Pricing and the Risk Neutral Density

Let S denote the underlying asset price at timEhe European call option with pri€g is
written on this asset with strik€ and maturityT. We assume the interest ratis constant. Following
the Harrison and Pliska [1981] result on the aalgiér free European call option price, there exisiska

neutral density (RND) functiomg(S;), such that the equilibrium call option price canwritten as:

C(K)=e"Emax(s; ~K 0)]=e" [ (S -K)g(S;)ds: (4)

Here, Q is the risk neutral measure aElﬁ[[]] is the risk-neutral expectation operator condalam

information available at timg g(S;) is the risk-neutral density function of the urglierg at maturity.

Similarly, the arbitrage free option pricing eqoatifor a put option is given by:

K
R(K)=e " TVER[maxK - S; 0)] =e" TV [ (K - $)g(S;)dS; 5)
In an arbitrage-free economy, the following marétegcondition must also be satisfied:

§ =e"TES(S;) (6)

European Call and Put Option Price with GEV returns



We assume that the RND functig(s;) in (4) for a holding period equal to time to matiuof
the option is represented by the GEV distributiMe derive closed form solutions for the call and pu
option pricing equations by analytically solvingetimtegrals in (4) and (5). For the purpose of
obtaining an analytic closed form solution, it viasnd necessary to define returns as simple refurns
We define simple negative returns as follows:

L-p--S7S 4 S

S S (7)

In keeping with the extreme value distribution mitidg of economic losse,; is assumed to follow
the GEV distribution given in (3.a¥ # 0 ,and hence the density function for the negatiwerns is

given by:

f(LT)=%(1+—{(LT _'U)j_l_l/{ex —(1+—E(LT —,u)j_”‘( ®)

g g

Note, the relationship between the density functar_; in (8) and the RND functiog(S;) in (4) for

the underlying pric&: is given by the general formula:

oL
g(s)=fL )5 =L)< (©)
0S, S
On substituting (8) into (9), we obtain the RND ¢tion of the underlying price in terms of the GEV

density function as in equation (3.a) :

g(sr) — 1 [1_'_ E(LT _'u)j‘l‘llfex _[1_'_ E(LT _:u)j_llg (10)

So o o
with
S-p)=1+8 -5
1+0_(LT ) 1+0_(1 5 ,uj>0 (11)

We will first consider the case whér0 and 0 € < 12 As already discussed, in this case the
negative returns distribution is Fréchet and timplies that the price RND functig(S) in (10), in
order to satisfy the condition in (11), is trunchta the right. Hence, the upper limit of integratfor

” Note, simple returns can give rise to the thecagpossibility of negative stock prices whgr 0. However, for purposes of
option pricing this does not pose a problem asHercall price the lower limit of integratidf for the stock price in equation (4)
is always positive and likewise for the put pribe tower limit of integration for the stock priaeequation (5) is zero.
Additionally, numerical results (not reported irstharticle) show that the implied GEV parametérso) obtained when using
simple returns are not statistically differenthe bnes obtained using log returns.

® The condition 0< <1 is necessary to rule out the case that thierfiesnent for the stock price at maturity is infiniind the
option value becomes infinite. In this article@kes ofé>0 will be constrained in this way. The closed faotution for the

call option for the case when @<1 is identical to the one obtained for the cakent < 0. This is also true for the closed form
solution for put option prices. Appendix B deriths closed form solutions for the call and thegnpttons in the case &f= 0.
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the call option price in (4) becomes (1— U+ U/f) 2 Substitutingg(S) in (10) into the call price

equation in (4), we have:

CI(K) — e_r(T_t)J‘KS(l—ﬂw/{)(Sr _ K)1(:]_.|_<t(|‘T_'u))_l_l/‘:r ex;{—[l+ gt(LTo__'u))_l/{JdSr (12)

So o

Consider the change of variable:

y:1+§(LT-/J)=1+§( -%-/Jj (13)

Under this change of variable, the underlying p8eanddS; can be written in terms gfas follows:

o

sr=s(1—u—?(y—1)J and ds=—s§dy (14)

Also, the density function in (10) for the undenlgiprice at maturity in terms gfbecomes:

1 ( ¢ -1/¢
=— exp— (15)
a(y) S*J(y Jexrl-y¢)
Note that under the change of variable the lowsit lof integration for the call option equation(it)
becomes:
K
H=1+4{1-K (16)
ol §

The upper limit of integration in (12) becomes®ubstituting foiS; anddS; as defined in (14) into

(12), and using the new limits of integration wedta

Cter(T—t) - I:(St (1-#-%@-1)] _ KJé(y—l—U{)exr{_ y—llé)(_ S%] dy (17)

Simplifying and rearranging (17) we have:

° On the other hand, whénx< 0 the GEV density function f@; is truncated on the left, and therefore, the lolmeit of
integration for the call option price in (4) becaneax[K, $(1 -« + ¢/£)] and the upper limit remairs. However, the closed
form solutions for the call option are identicat fmth cases wheh> 0 and: < 0. This also holds for put option prices.
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Cter(T—t) - _%J'HO( S(l—u—%(y-l)J _ Kj(y—l—llf)exd_ y—llf) dy

S0 o y-“f)dy—(s(l—w%]— Kj Ju by )exd-y ) ay

| <
22 {3142

The integral(/, in (18) above can be solved by applying the charfgeriablet = y-%/¢, and then it
can be evaluated in terms of the incomplete Ganumetibn, yielding the following solution:

M e

(18)

= [y exd-y € dy=-¢rfi-¢,H) (19)
The solution of integral/, in (18) is:
0, = J-Ho (y—l—l/{)exd_ y_ll‘()dy= [gr exr(_ y—llf)]OH _ g:(_ exr{_ H —1/6)) (20)

Combining results fot/, andi/, , we obtain a closed form for the GEV call optiaite:

C.(K) :e"(T“){_S‘Tar(l—f, H -1/5)_(5{1_/”%] - KJ(— e‘”“*)} (21)

Grouping the terms with together we have:
C.(K) :e‘f”“’{s((l— p+a/&)e ™ —% rh-&H -1/;)j K e_Hw} o2

Theoretically, the application of the Girsanov The (see, Neftci [2000]) to option pricing
implies that the empirical distribution and thekngeutral distribution need to have the same suppor
By the Girsanov Theorem, the price levels and ibe &f returns that ar@-impossible due to the
application of the truncation condition in (11) slbnot beP-possible, and vice versa, in terms of the
realized historical prices and returns. We find tha conditions of the Girsanov Theorem are datisf
for the sample period for which the implied GEV &dfND is extracted from option prices. The
analysis of this is given in Appendix D.

Following similar steps, we can also dem closed form solution for the put option prceler
GEV returns? Details of this derivation can be found in the Apgix A, which yields the following

equation:

1% Once the call pricing formula is derived, one dosimply obtain the put pricing formula using the-pall parity relationship.
We numerically verified that the independently ded call and put pricing formulas satisfy put-qztity.

-12 -



P(K) :e-rﬁ‘“{K(e‘“'“ —e‘“'”‘)—s[(l— u+ a/{)(e‘”'”‘ —e‘“’“)—? ra-&nve Hve )j} (23)

whereh =1+ E/J(l—,u) > 0. Note thah is a constant, given a set of parameiees andé.
In the following sections, we will analyse the peojes of the GEV RND based closed form solutions
for the call and put options under different moressgconditions and values for the tail shape

parameter.

Analysis of the GEV call option pricing model

This section aims to give some insights into tleset form solution for the GEV based call
option pricing equation given in (22), which hasteomponents and respective probability weights
involving § andK. These two components can be interpreted alongaime lines as the Black-Scholes

model. The key to understanding the GEV optionipgidormula lies with the term,

_[ é( _K_ j
= +=|1 H
e" Y= el 7\ 8 (24)

This term is the cumulative GEV distribution furmctias defined in (2.a) for the “standardized
moneyness” of the option defined (&— K)/S. Hence, it corresponds to the risk neutral prdiigip
of the call option being in the money at matufitfzor a given set of implied GEV parameters

{W, 0, &} we can work out (see, Exhibit 4) the range okreise priceK in relation to the give
which yield e_H_M = 1 for deep in-the-money call optiore_,H_M = 0 for deep out-of-the-money
call options, and 0 ‘e_H_W < 1 for all other cases.

Exhibit 4 below plots the probabilify= e_H_M of exercising the option at maturity, given by
the GEV model with two different values &fand also for the Black-Scholes mod&When&>0, the
density function of losses is Fréchet, and thusjriiplied price density function is left skewed twét
fat tail on the left, as shown respectively in Bbits 2c and 3c. Since the latter implies ther lisgher
probability of downward moves of the underlyingrihia the Black-Scholes case, we see from Exhibit
4 how the probability of exercising the call optiwhen& > 0 approaches 1 much slower than for the

Black-Scholes model.

Exhibit 4
Probability of the call option being in the money at maturity

1 Recall that in the case of the Black-Scholes mtigeprobability of the option being in the moneyraturity is given by
N(d,), where N() is the standard cumulative normalritigtion function, anctj2 = [|n(st TK)+(r - o? 12)T]/ gﬁ

2To make the three cases comparable, we use thetsaaied call option price data to estimate the @Bdel and the Black-
Scholes model. Then, to obtain the second cagbédBEV model, we fi¥ to be equal to the initial estimate, but with ogip®
sign, and estimate the other two GEV parameters.
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Notes: The probability of the call option beingtire money at maturity is given Ipf='=exp(-H" )
for the GEV case, and Ipf*=N(d,) for the Black-Scholes. The positive and negatiafeies of; used
for the GEV distribution are 0.16 and -0.16 respety.

On the other hand, wherk 0, the GEV density of the losses is of Weibytld, and thus the
implied price density function is right-skewed,uktifig in a higher probability of upward moves.
Therefore, the probability of exercising the option as we lower the strikegK reaches 1 faster than
in the Black-Scholes case. Note that for highkstgrices and for any value @f# 0, the probability of

the option being in the money goes to zero faken for the Black-Scholes case.

When the call option is deep in-the-money (ITM)vt << § and e_H_W =1, the call

price converges to a linear function of the expdptayoff (see Appendix C for proof). Thus,
C(K) =e" ™V (ES, [S]-K) =5 -e VK (25)

Here EtQGEV[SF] is the conditional first moment of the price RNhction, which by the

martingale condition in (6) equal For this range of strike prices, the option gsiobtained with the
GEV model converge to those given by the Black-8hmodel. When the option is deep out of the

_y V¢
money, thenK >> S; ande " =0, anditis easy to verify that the call prisezero.

Exhibit 5 displays the call option prices obtairfiemm the GEV model and the Black-Scholes
model. The Black-Scholes model overprices the édive@-money (OTM) call options relative to the
GEV model in both cases. In the OTM case, the GEMehyields higher values of call prices when
&< 0 than wher§ > 0. This is because whén 0, upward movements in the underlying price aoeem
likely and the price density is truncated on tHe(gee Exhibit 3a). On the other hand, wiien0
downward movements in the price are more likely @nedprice density function is truncated on the
right (see Exhibit 3c). Hence, in the OTM regidrhigh exercise prices, the GEV price witlg > 0

gives the lowest prices for the call option.
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Exhibit 5
Call option pricesfor the GEV model and the Black-Scholes model

Call

500

400

300

Z0oo

100

K

4500 =1 S0o0o0 5500

Notes: The positive and negative valueg ased for the GEV distribution are 0.16 and -0.16
respectively.

For in-the-money (ITM) options, as seen in Exhiithe Black-Scholes model under prices
call options when compared to the GEV model, aedGEV model gives higher option prices wiien
> 0 than wher§ < 0. This can be explained in terms of the asymyriatthe peakedness of the two
densities. Wheg > 0, the RND function for the price is left skewedth peakedness at higher values
of the underlying than whei< 0. For at-the-money (ATM) options, the priceseg by both models
are approximately the same. Note that for deep 6ptions, i.e. for much lower values i¢f(not
shown in the graph) both GEV and Black-Scholesgsritonverge to the present discounted value of

the intrinsic value of the option, increasing lifgasK falls.

Analysis of the GEV put option pricing model

The analysis for the closed form solution of the\@#ut option pricing model in equation
(23) is analogous to what was done in the caskeofall option. The probability of a put being et
money is given by

_hV¢ _HVE _H V¢
-e =]l-e

(26)

_h U<
Here, note € h is approximately equal to 1 and hence (26) is oimasthe probability of

the call being in the money at maturity. In Exhibjtwhile considering the case of a Fréchet
distribution for losses with > 0, for low strike prices relative to the undémty, we have a greater
probability of the put option being in the moneyaturity as compared to either the Black-Scholes

case or the GEV case whér 0.

Exhibit 6
Probability of the put option being in the money at maturity
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Notes: the probability of being in the money foe fhut option at maturity is given Ipy="=1 - exp(-H
V<) for the GEV case, and pf-S=N(-d,) for the Black-Scholes. The positive and negatiateies of
used for the GEV distribution are 0.16 and -0.1&pestively.

Exhibit 7 below displays the put option prices dated with the GEV model along with the
Black-Scholes model. The Black-Scholes model sulislyy underprices the out-of-the-money (OTM)
put options relative to the GEV model. The GEV nigdelds higher values of OTM put prices whgn
> 0 than wher < 0. For in-the-money (ITM) put options, the Blaskholes model only marginally
overprices put options with respect to the GEV nhotllee GEV model gives higher prices for ITM put
options wher§ < 0 than whei§ > 0. For at-the-money (ATM) options, the pricesegi by both the
GEV and the Black-Scholes models are approximdkbelysame. Note that for deep ITM put options,

both GEV and Black-Scholes prices converge to thegnt discounted value of the intrinsic value of

the option,e " T VK — S , which increases linearly witk.

Exhibit 7
Put option pricesfor the GEV model and the Black-Scholes model
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Notes: The positive and negative valueg abed in the case of the GEV model are 0.16 arid -0.

respectively.
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RESULTS

Data description

The data used in this study are the daily settlémpeces of the FTSE 100 index call and put
options published by the London International FoiahFutures and Options Exchange (LIFFE). These
settlement prices are based on quotes and tramsactiuring the day and are used to mark options and
futures positions to market. Options are listedxqiry dates for the nearest four months and fer th
nearest June and December. FTSE 100 options expitee third Friday of the expiry month. The
FTSE 100 option strikes are in intervals of 50 @0 points depending on time-to-expiry, and the
minimum tick size is 0.5. There are four FTSE 10fes contracts a year, expiring on the third &yid

of March, June, September and December.

The LIFFE exchange quotes settlement prices foida vange of options, even though some
of them may have not been traded on a given dahisrstudy we only consider prices of traded
options, that is, options that have a non-zeroeacblume on a given day. The data was also fitere
to exclude days when the cross-section of optiaakléss than three option strikes. Also, options
whose prices were quoted as zero, had less thawagleto expiry, or more than 120 days to expiry

were eliminated. Finally, option prices were chetfar violations of the monotonicity conditidn.

The period of study is from 2-Jan-1997 to 1-Jun@@Xhibit 8 below summarizes the
average number of traded option prices availabla daily basis, across both strikes and maturities,
each of the years in the period under study, inolyoth call and put options. We can see how the
number of traded contracts has increased subdtaiieough time, from an average of 45 daily trdde
option prices in 1997 to 159 such prices in 200% flange of strikes with options traded has also

widened through time.

Exhibit 8

Summary data on FTSE-100 I ndex option prices
Period Number of option prices Minimum strike Maximum strike

(daily average)

1997 45 3125 5625
1998 61 3625 6825
1999 82 4025 7625
2000 98 4025 9125
2001 127 3775 7125
2002 126 2125 6725
2003 118 2425 5825
2004 124 2625 5825
2005 112 2325 5825
2006 114 2525 6625
2007 144 4025 7725

3 Monotonicity requires that the call (put) prices atrictly decreasing (increasing) with respedhtexercise price. A small
number of option prices that did not satisfy thesdition were removed from the sample.
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2008 164 3625 9025
2009 159 2600 9025
All Years 113 2125 9125

Notes: Average number of traded option prices atbel per day, minimum and maximum strike price

with options trade per year (Jan 1997-June2009).

The European-style FTSE100 options, though theypptiens on the FTSE 100 index, can be
considered as options on FTSE-100 index futuresaume the futures contract expires on the same date
as the option. Therefore, the futures will havedhme value as the index at maturity, and can &é& us
as a proxy of the underlying FTSE 100 index. Byngghis method, we avoid having to use the
dividend yield of the FTSE 100 index, and the nmgidie condition in (6) becomes:

F=E%(S) @)

HereF, is the price of the FTSE 100 futures contradt ahdS; is the FTSE 100 index at
maturity T. This martingale condition can be used to redueentimber of parameters in the GEV
model from 3 to 2. This is analogous to the procediuthe Black-Scholes model where the mean of
the distribution is obtained from the martingaledition and only the volatility parameter need®¢o
estimated. In the GEV case, the mean of the digtdb does not directly correspond to the location
parameter. Instead, the mean of the GEV distributis shown in Reiss and Thomas [2001], is a

function of all three parameters and is defined,ag-q-¢£)-1)/&)c. We can use this definition of the

GEV mean together with (6) to express the locagpiarameter: in terms of the futures pricEt’T ,

current spot price, and the GEV scale and tail slgvameters andé:

u=1- Fé': {r(l—;‘)—l}a (28)

The risk-free rates used are the British Bankesogimtion’s 11 a.m. fixings of the 3-month
Short Sterling London InterBank Offer Rate (LIBO#Ytained from the website www.bba.org.uk.
Even though the 3-month LIBOR market does not mlew maturity-matched interest rate, it has the
advantages of liquidity and of approximating theuatmarket borrowing and lending rates faced by

option market participants (Bliss and Panigirtzagi2004]).

The option data used in this study can be divitéol & moneyness categories given in
Figlewski [2002]** Exhibit 9 below reports the number of observatifamsall and put options in each

category of moneyness and maturity.

Exhibit 9

Number of observationsin each maturity and moneyness category

14 Figlewski [2002] explains that a measure of optimoneyness should include an adjustment for vitiatihd maturity.
Following his definition, we calculate the moneymie$an option agn( s /Ke = ) /(g ® /T ) » Wherea B3 is the Black-

Scholes implied volatility for each option.
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Number of Observations
Subsample Calls Puts
Maturity
< 30 days 25,710 31,672
30 to 60 days 24,553 31,534
60 to 90 days 15,463 19,597
90 to 120 days 8,159 9,905
Moneyness
deep OTM 8,421 17,895
OT™M 23,507 38,043
ATM 30,086 26,808
IT™ 8,171 5,790
deep ITM 3,701 4,172
Total 73,885 92,708

Notes: Number of observations of traded optiongiffierent maturity and moneyness categories
(January 1997- June 2009).

Here, moneyness for a given option indicates howynstandard deviations, the strike
price is away from the current underlying pricagnms of the volatility, maturity of the option. An
option is deeput-of-the-moneyDeep OTM) if it is more than 1& out of the money, and similarly, it
is deep in-the-money (Deep ITM) if it is more thab o in-the-money. An option is classified as being
at the money (ATM) if it is 0.% in either direction of OTM and ITM. An additionelassification is
done for maturity, in terms of days to expiratiblote that there are options data available for tione
expiration longer than 120 days, but the numbeariaes available for such long time horizons is kma
and the options are traded less frequently.

As can be seen in Exhibit 9, the short to medium téme to maturity, the first two groups,
have the greatest number of data points, for both @nd calls. In terms of moneyness, the largest
number of observations is found in the OTM and Agalegory, while the deep ITM has the least
number of observations for both puts and calls (Igpfions are typically very expensive, as the aptio

premium includes the intrinsic value, and thusreetraded often).

Empirical Methodology

For each quarterly expiration date in our dataqukra total of 49 from March 1997 to March
2009, a target observation date was determinedhaitizons of 90, 60, 30 and 10 days to maturity. If
no options were traded on the target observatite, tlae nearest date with traded options was used.
All traded option prices available for each targleservation date were used, subject to the filters
discussed above, across all strikes and acrosgsdlirities, giving a one year constant horizon iegl
RND. The implied RND was derived using the GEV andBleck-Scholes option pricing models.

'3 In order to estimate a single scale parametst toef prices of options across multiple horizoms,need to annualise the scale
parametes in the pricing equations. This is similar to firecedure used in the Black-Scholes model suchthkamplied
volatility parameter represents an annualised vdloechieve this, at the estimation stage, weamepthe GEV scale parameter
sigmag by , ., whereT is the time to maturity of the option, in numbéyears.
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For each of these target observation dates a smgléeed RND was fitted using both put and call
prices.
The GEV model was estimated by minimizing the sdisquared errors (SSE) between the

option pricesIS given by the analytical solution of the GEV optjaricing equations in (22) and (23)
and the observed traded option priBe@ncluding both calls and puts) with strik€s as indicated
below:

N

SSHt) = ran{Z [0.(k)- St(Ki))z} (29)

' i=1

Note that for the GEV model, we minimise the sunsafiared errors with respect to only two

GEV parameters, ie. scale and tail shape parametarslé. We use equation (28) to substitute out

the location parameterwhich has been derived as function of the futprése, Ft'T , current spot

price, and these two parameters. For the Black{8shmodel, we likewise derive a single implied
volatility parameter using both call and put pricEse optimization was performed using the non-

linear least squares algorithm from the Optimizatimolbox in MatLab.

In sample pricing performance

The in sample pricing performance tests consissstifnating the implied densities at tithe
by using option prices at timteas well, and then analysing how well the modsltfie same option
prices. The pricing performance is reported in gafithe root mean square error RMSE, which

represents the average pricing error in pence [pt&oro

RMSH?) = %E(t) (30)

For each maturity horizon (ie. 10, 30, 60, 90 dalys)average pricing error is taken over a
total of 49 quarterly target observation dates fidarch 1997 to March 2009. The analysis that
follows in Exhibit 10 reports the average pricirgoes in terms of RMSE for each of these horizons
used, to highlight some of the interesting pridiigses that are observed.

The GEV option pricing model outperforms the Bl&tholes model for all time horizons,
and for both puts and calls. In particular, the GE¥del removes the large pricing bias that the Blac
Scholes model exhibits for options far from magurior a 90 day horizon, the Black-Scholes model
has an average pricing error of 20.71 pence, whdeerror for the GEV is almost three times smaller
at 7.44 pence. Both models display an improvemepeiformance as time to maturity decreases. For
close to maturity options, at a 10 day horizon,@t€V model continues to produce lower pricing
errors, although the difference between the twoetwbdecomes smaller. Another observation is that
the Black-Scholes model exhibits larger pricingesrfor puts than for calls. In contrast, the GEV

model exhibits similar sized errors for puts anil @antracts. As anticipated from discussion on the
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GEV put option result, it is important to note tfat put options, the Black-Scholes model suffefara
greater deterioration in pricing performance whempared to the GEV model. While on average,
across all maturity days, the difference the erforgalls and puts for the GEV model is only 0.12
pence, for the Black-Scholes model, that differdecibstantially larger at 2.36 pence, mostlyetniv

by the differences between put and call errorgdofrom maturity options.

Exhibit 10
In-sample pricing perfor mance

90 days 60 days 30 days 10 days All days
BS GEV BS GEV BS GEV BS GEV BS GEV
Calls 17.73 7.16 14.60 4.38 8.87 4.10 6.62 5.82 11.96 5.36
Puts 22.78 7.46 17.58 4.85 10.30 3.96 6.67 5.64 14.33 5.48
All 20.71 7.44 16.30 4.66 9.79 4.06 6.67 5.72 13.37 5.47

Notes: In-sample pricing performance of the Black@&es (BS) and the GEV models, in terms of
Average Root Mean Square Error for option pricegéance, for options with horizons of 90, 60, 30
and 10 days to maturity.

Analysis of the in-sample pricing bias

It has been well documented that the Black-Scholedel exhibits a pricing bias for out of
the money and in the money options, while priciryenaccurately at the money options (Rubinstein,
1985). The pricing bias is defined in equation (84 }he deviation of the model estimated price with

respect to the observed market price for each ogtmtract:
Price bias = Market price — Estimated price (31)

Here we take the individual option pricing errokdained from the estimation done in the
empirical methodology section, and report the ayerarice bias across moneyness levels using a
spline method® The average pricing bias for call options is gdtbelow in Exhibit 11 for 90 and 10
day time horizon. For the 90 day time horizon, ankeeping with the results obtained in the presiou
section, the Black-Scholes model shows more desditm in pricing accuracy for far from maturity
contracts than for close to maturity ones. At fanf maturity, the Black-Scholes model underprices
ITM call options (moneyness from +0.5 to +1.5) mepn15 pence, while it overprices OTM call
options (moneyness from -0.5 to -1.5) by aroung@@ce. On the other hand, the price bias for the
GEV model appears to be much less dependent andheyness levels, delivering much lower price
bias across all moneyness levels. For the 10 day ltiorizon, we can see that for close to matustly c
options, the Black-Scholes model exhibits the spatiern of price bias as for far from maturity
options, but the magnitude of these price biasewish smaller. In line with results in the prexsou
section, both models display a reduction in pridifas as time to maturity decreases, and exhibit

similar pricing biases oscillating between aroudpence and — 6 pence.

16 Given that at different target observation dateshave different moneyness levels, we fit a spttinéae pricing error
observations as a function of moneyness on eachadaytake the average of these splines acrog®ttarget observation dates
for each horizon. Note we do not show price biasgside the [-2,+2] moneyness range as there adlysoo few data points
to obtain meaningful averages, but model priced terconverge to market prices in the limits, eitbalapsing to 0 for very
deep OTM or equalling the intrinsic value for velgep ITM.
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Exhibit 11

Average call price biasin terms of moneyness
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Exhibit 12 below display the pricing bias for pydtions. For far from maturity put options, at
90 days to maturity, the Black-Scholes model ovegsrITM put options (moneyness from -0.5 to -
1.5) by over 10 pence, while underprices OTM puiams (moneyness from +0.5 to +1.5) by up to 30
pence. On the other hand, the GEV model exhibstaall pricing bias across the board. For close to
maturity options, the chart for a 10 day time honizhows how both models exhibit price biases of

similar magnitude of around +6 pence.

Exhibit 12

Average price biasfor putsin terms of moneyness
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a) 90 days to expiration puts
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OUT OF SAMPLE PRICING PERFORMANCE

For testing the out of sample pricing performantte models, we calculate the model based
option prices for contracts tradedtal, with parameters that were estimated at tiimeempirical
methodology section, wheteare the target observation dates described abtres, we calculate the
pricing errors as the differences between the &stetl option prices at tim@nd the market option

prices known at timé+1.

These out of sample pricing errors are shown initixh3 below, in terms of RMSEs. They
follow a similar pattern to the one reported fag th sample pricing results. In all cases, the GEV
delivers smaller pricing errors than Black-Schol&sere is clearly some deterioration in the out of
sample pricing performance for both the Black-Seba@nd the GEV option pricing models. Again,

the GEV model posts uniformly good performance alkthe maturity periods while Black-Scholes
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does not and further the GEV model seems to beptestd to price 30 day maturity options. The
Black-Scholes model seems to have weakness prcihgptions while the GEV model has a marked

advantage in this area.

Exhibit 13
Out of sample pricing performance

90 days 60 days 30 days 10 days All days
BS GEV BS GEV BS GEV BS GEV BS GEV
Calls 1786 864 | 16.12 7.68 | 1032 645 | 7.54 6.27 1296 7.26
Puts 2278 853 | 17.76 787 | 10.33 6.08 | 7.73 5.83 1465 7.08
All 21.03 866 | 1749 794 | 1050 6.29 | 7.68 6.01 1417  7.22

Notes: One day ahead pricing bias of the Black-Bsh®BS) and the GEV models, in terms of RMSE
for option prices in pence, for options with hongmf 90, 60, 30 and 10 days to maturity.

Theimplied tail shape parameter

The time series of the implied GEV tail shape pat@mé, from 2-Jan-1997 to 1-Jun-2009 is
displayed in Exhibit 14. These were obtained binesing a single implied GEV density for all
options selected by our filter for every day of #aenple'’ Note the implied tail index values are
obtained for a constant maturity horizon and heheg do not suffer from maturity effects. The
median standard error of thesestimates is 0.0077, thus, resulting in the majaf these tail shape
estimates being significantly different than zéite see that the implied tail index exhibits time
variation, switching between negative values, whicply a finite tailed Weibull distribution, and
positive values, which imply a fat tailed Fréchistidbution. It is important to note how the GEV
distribution is flexible to capture shifts in tailovements with fat tailed behaviour being interspdr
with more normal market conditions. For examplent 2000 to July 2002, there was a period of
relative calm while periods of severe market falirisis coincide with a Fréchet type implied GEV
distribution characterized by a positive tail shaqech as during LTCM crisis in 1998, and the dredi

crisis in 2007-8. The next section will look at soof these crisis periods in more detail.

Exhibit 14
Time series of theimplied GEV tail shape parameter &

" Here, we follow the same constant horizon methagiobutlined earlier. Instead of only estimating ®BEV implied density
for some target observation dates, we estimat&H¥ implied density for every trading day in thengde, in order to obtain a
daily time series of the implied tail index.
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Event studies

In this section we compare the implied GEV disttidw of prices before and after special
events. Some of the major events that occurredmiitie period of study (1997 — 2009) are the Asian
Crisis, the LTCM crisis, 9/11, and the collapsé_ehman Brothers during the 2007-8 credit crisis.

The Asian Crisis

Starting in July 1997, several major Asian marleserienced a downwards spiral of panic
selling and price discounting, triggered by therency devaluation in Thailand. These events, known
as the Asian crisis, have been pinpointed to cudmeimround the 300ctober 1997 (Gemmill and
Saflekos, [2000]). Exhibit 15 below displays theplied RNDs for the GEV model and for the Black-
Scholes model, one week before the Asian crisisdb@ctober 1997 (left panel) and five weeks after i
on 28 November 1997 (right panel). In both casesGRV density exhibits negative skewness and a
fatter than normal left tail, and they increasessabtially after the Asian crisis, implying hightan
normal probabilities of further downward moves. Taéshape parameter increased, going from a
negative -0.09 value that implied a thin tailed Wi distribution before the Asian crisis, to a jioge
0.05, which implied a fat tailed Frechet type dhsttion afterwards. Implied kurtosis increased
substantially, almost doubling after the event,liimg that extreme losses become more probable. A

detailed summary of implied moments is given atehe of this section.

Exhibit 15

Implied RND functions around the Asian crisis
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The LTCM Cirisis

Long Term Capital Management (LTCM) was a hedgel fimunded in 1994 by a group of
renowned traders and academics, who raised $lignkalt inception. The main strategy of the fund
was convergence arbitrage, and during the firstyears its returns were close to 40%. However, at
the end of September 1998, the fund had lost softamounts and was close to default. To avoid
the threat of a global systemic crisis, on 23 Septr 1998 the Federal Reserve organized a $3.5
billion rescue package. A group of leading bankdtover the management of the fund in exchange
for 90% of its equity. Exhibit 16 below shows tieplied RND functions one week before the major
events in the LTCM crisis, on 16 September 1998 [flenel), and three weeks after, on 16 October
1998 (right panel). The tail shape paramétercreased from -0.06 before the LTCM crisis, 1030.
after, with both implied skewness and kurtosiseasing substantially after the event. This indeate
greater degree of uncertainty in the market whicmanifested in a high implied probability of fugth

market downturns.

Exhibit 16
Implied RND functionsaround the LTCM crisis
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The 11 September 2001 Terrorist Attacks

b) After LTCM crisis

The 9/11 terrorist attacks caused a sudden dropankets around the world, with the FTSE
100 suffering a loss of -2.6%, one of the worstydaiss in the period of 1996 to 2009. Investors

feared the attacks would hasten a recession whishalveady looming for the UK. Exhibit 17 shows
the implied RND functions for the day before thiaelts, 10 September 2001, on the left panel, aad th
RNDs for a day after the event, 12 September 2001he right panel. The implied tail shape

parametet increased from -0.11 the day before the event3,d6 a day after the events, implying a

fattening of the tail. This indicates the markepeostations of further falls increased quite rapafier

this event, similar to what we saw in the previbus cases.

Exhibit 17
Implied RND functions around 9/11 event
x 10° 10-Sep-01 x 10° 12-Sep-01
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The collapse of Lehman Brothers

Lehman Brothers filed for Chapter 11 bankruptcytgeton on Monday September 15, 2008.
Exhibit 18 shows the implied RND functions extratfeom option prices before the event, on Friday
September 12, and on the day of the bankrupteyfilMonday, September 15. We can see that the
implied GEV distribution before the event was adhgaxhibiting substantially negative skewness and
a fat tail on the left, reflecting the negative ts@ent in the market about the ongoing credit srisi
which started in 2007. This negative sentiment paasially driven by the uncertainty about further
write-downs and credit-worthiness of financial ingtons, having already seen the collapse of Bear
Stearns in March that year. We can see how thifaif the implied distribution became even more

pronounced on Monday 15 September when Lehman &ofthed for bankruptcy.

Exhibit 18
Implied RND functions around the collapse of Lehman Brothers
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We have seen how the non-Gaussian characteristicgpbed RNDs became more
accentuated after each of the four events, withetteail of the implied RND becoming thicker, and
the distribution more left skewed, further devigtinom the Gaussian Black-Scholes implied
distribution. In order to quantify these changesdhigit 19 below displays the GEV implied parameters
before and after each of the four crisis eventd,tha implied moments of the GEV distribution, as
well as the volatility implied by the Black-Scholemdel. Without exception, the implied tail shape
index, &, of the GEV distribution switches from negativezero to positive after the crisis event. The
implied volatility increases for both GEV and BlaSkholes models after the events, reflecting an
increase of the uncertainty of the market. Indéeel GEV and Black-Scholes implied volatilities are
remarkably identical. However, the higher momemtglied by the GEV model already differ from the
ones of a normal distribution even before the eyjeartd non-normal characteristics of the implied
GEV RNDs further increase after the events, indtiggd growing asymmetry in the distribution and

greater probability of extreme losses. The fact the GEV model is highly sensitive to changes in
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market sentiment and captures increased fear tieiuprice falls is in line with previous studies the
use of non-Gaussian RND analysis such as GemndilBaflekos [2000]. It is beyond the scope of this
article to establish whether implied GEV based RiNiictions can predict price falls rather than be

useful in capturing the change in market sentinafiet or coincidental with the crisis event.

Exhibit 19
Summary statistics around event studies

Implied Implied Implied Implied

Event Date o § Volatility Skewness Kurtosis Vol BS
Asian crisis 17-Oct-97  0.18 (0.003) -0.09 (0.008) 19.1% -0.60 3.47 19.8%
10-Nov-97  0.23 (0.006) +0.05(0.024) 27.5% -1.38 6.72 26.4%

LTCM 16-Sep-98  0.31 (0.007) -0.06 (0.016) 37.6% -0.84 4.19 34.7%
16-Oct-98  0.30 (0.005) +0.03 (0.009) 39.9% -1.30 6.23 37.7%

911 10-Sep-01  0.22 (0.002) -0.11 (0.003) 24.3% -0.60 3.48 24.8%
12-Sep-01  0.27 (0.004) -0.05(0.011) 28.8% -0.89 4.35 30.0%

Lehman 12-Sep-08  0.19 (0.022) +0.00 (0.054)  22.4% -0.85 4.20 22.5%
Brothers 15-Sep-08  0.24 (0.013) -0.05 (0.020)  25.7% -0.99 4.75 26.8%

Notes: GEV parameters with standard errors, imptednents by the GEV based RND functions, and
implied Black-Scholes volatility around crisis et@n

CONCLUSIONS

We have developed a new option pricing model thagised on the GEV distribution, and
have obtained closed form solutions for the Harriand Pliska [1981] no arbitrage equilibrium price
for the European call and put options. It was atigihat the GEV density function for negative asset
returns, which in turn yielded the GEV based RNbBction, has great flexibility in defining the tail
shape of the latter implied by traded option pdeaéa withouta priori restrictions on the class of
distributions. In particular, na priori restriction is imposed that the GEV distributiométion of
negative returns belongs to the Fréchet classfaifittails. The traded option data is used to sdlect
GEV RND function which displays left skewness agptbkurtosis for the underlying under the risk
neutral measure. Some recent option pricing mdtalsaim to capture the leptokurtosis and leftxske
in the RND function, in contrast, start with a sfiedat tailed distribution. Other option pricing
models that attempt to overcome the drawbackseoBthck-Scholes model fail to obtain closed form
solutions or have far too many parameters.

The closed form solution for the GEV based callappricing model has properties
analogous to the Black-Scholes price equation,csihewith regard to the probability of the optiof
being in or out of the money at maturity. In the\G&ase, the latter is governed by the cumulative
distribution for the GEV, which is defined by thaplied GEV parameters. The implications for the
probability mass in the tails of the GEV densitypdtion with switches in the tail shape parameielis
shown to challenge the traditional understandingibbehaviour from symmetric Gumbel class of
distributions where 99% of the rises and falls aifse occur within limited volatility range and witto

skew in the probability mass. The skew in the dgrfanction in the case of positive and negativke ta
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shape values implies large one directional movesnamd truncated probability mass beyond a certain
value in the other direction. In other words, audianeous existence of infinite tails in both diress

is typically unlikely except for Gumbel class ofttibutions where, ofcourse, extreme moves in eithe
direction have non-zero but negligible probability.

From the analysis, there is a very clear indicati@i& > 0 results in a smaller probability for
a call option being in the money at maturity coneplato the Black-Scholes case. In contrast, for the
put option.£ > 0 results in a higher probability of being ire titmoney at lower strikes when compared
to the Black-Scholes case. When applying the GEfibogpricing model for the FTSE 100 index
options, it was found that the GEV based in-sampleing biases were substantially smaller than the
ones from the Black-Scholes, for all times to miagiand at all moneyness levels. This improved
pricing accuracy was also found in out-of-sampieipg tests, when forecasting one day ahead option
prices with previous day’s parameter estimates.

We showed how the implied tail shape parameterfaasd to be time varying, though stable
enough to be useful in out of sample pricing. Casddgh positives in the market implied density
function, associated with the GEV-Fréchet classallg coincided with periods of market falls and
periods surrounding crisis events. For most otleeiods, the implied tail shape parameter indicated
Weibull or Gumbel distributions.

In the event studies surrounding particular cesients, typically the implied tail shape
parametet increases after the crisis event, which indictitasthe implied GEV distributions reflect
the market sentiment of increased fear of downwaogdes. There is a large and growing literature on
traded option implied statistics for their capac¢dyncorporate market information and for foreoagt
volatility and market distress (see,Giamouridis Skéhdopoulis [2010], and Poon and Granger
[2003]). Given the in sample and out of sampleappricing capabilities of the GEV model for 30
days and longer time to maturity, there is cledidation that GEV based RNDs can deliver good
results in terms of capturing market expectatidmaarket distress beyond the 30 day horizon. These
results are in line with those in Peng, Markose Aleshtorn [2010], who have found that the GEV
RND based implied volatility outperforms VIX typeodhel free implied volatility measures for
forecasting realized volatility. However, furthesearch is needed to establish more rigorously
whether, as noted in previous studies (Gemmill @afliekos [2000]), the implied RND functions have
predictive power regarding downward market movementcan only reflect these moves coincidental
with the market crisis.

Future work will analyse the hedging propertieshef GEV based option pricing model, and
its scope for delta hedging. Further, the optiomkeigimplied tail index and the GEV based RND have
useful and interesting applications in risk managemin Markose and Alentorn [2008] the GEV
based implied RND is used to obtain the so calledeifne Economic Value at Risk (EE-VaR), in line
with the proposal to use a quantile based apptinaif the option implied RND in Ait-Sahalia and Lo
[2000]. It has been argued that E-VaR , in conti@siistorical data based VaR (sometimes called
statistical or S-VaR) is a more general risk measinmce it incorporates the market’s evaluation of
risk, the demand—supply effects, and the probaslihat correspond to extreme losses (Paniginzog|
and Skiadopoulos [2004]). Markose and Alentorn Bdihd that the GEV RND based VaR obtained
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from traded options can deliver better VaR perfaroeathan conventional methods. The explicit tail
shape parameter of the GEV based RND is citedeam#tin reason for the capacity of this new model
to flexibly and rapidly respond to extreme marketvements which to date has not been adequately

dealt with by other option pricing models.

APPENDIX A
Derivation of the put option price equation for £ >0

The derivation of the closed form solution for the option price equation is similar to the
derivation for the call option price equation. Whagplying the change of variable defined in (183) t
the put option price equation, after having subttd for the price RND functiog(S;) in (10), the

upper limit of integratiorK in the put option equation becomekas defined in (16), while the lower
limit of integration in the put option equation becesh =1+ 5(1— ,u)/a. Using these new limits of

integration we have:

&

“17%9, k-g|1-u+Z :
1508 -

Evaluating the first integral in (A-1) yields:

Ao g o

wo= [ [y day = e )= el - ) (a-2)

To solve the second integral in (A.1), considerdhange of variable= y_ll‘(, andy = t¢
dy = —&t™¢dt, which yields:
SR A HY e HY L e ot
W, = jhi,‘, te't d(t ): -& J' L tietdt= —{jh% tE9 et gt (A-3)
We can solve this integral directly by using thérdgon of the generalized Gamma function:
Ma2)-T(az)=N(az2)= [ t"e'dt (A-4)
Zy

and we obtain the following result:
.= [y exdyMe)dy =-£ri- g n e e (a5

Combining results fot/, andi/, and rearranging, we obtain a closed form solufiborihe put option

equation:

R(K) =e‘“T“’{K(e—“‘”“ —e‘”_”‘()-S((l— prale e —e‘“‘”)—% r(-&nve Hve )j}

(A-6)
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APPENDIX B
Derivation of the call option price equation for £E=0

The derivation of the closed form solution of tlal option price whe = 0 follows a similar
procedure to the one whér 0. By assuming that negative returns are disteitbdivllowing the
standardised GEV distribution whér= 0 given in (3.b), and applying the formula in {@ obtain the
RND function of the underlying priag(S) in terms of the standardized GEV density functioren in

equation (3.b) as follows:

a(s;) = %ex;{—@}ex;{— exp{—@j} (B-1)

Substitutingg(S) in (B.1) into the call price equation in (4), wave:

“(s - K)iex;{—(l‘%;ﬂ)jex;{—exp{—(l‘%;mjjdsr (B-2)

C(K)= e_r(T_t)J.K So

Consider the change of variable:

y= —M = l(i—1+ Iuj (B-3)
o o\ §

Under this change of variable, the underlying p8eanddS; can be written in terms gfas follows:
S =§({-p+oy)  and  dS =Sody (8-4)

Also, the density function in (B-1) for the undeénly price at maturity in terms gfbecomes:

o(y) = ——exp(y - exp(y) @)
So

Note now that under the change of variable the fdin@t of integration for the call option equatiom

(B.2) becomes:

= EEK -1+ ,uj (B-6)
g\ S

while the upper limit of integration in (B-2) remaiinfinity. Substituting fo5r anddS; as defined in

(B-4) into (B-2), using the new limits of integraiti, and rearranging we have:
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Ce™ = [ (8- u+ay)-K)exply-exp(y)) dy

=S f yexp(y-exp(y) dy+ (S (1- 1)~ K)[ "exp(y - exp(y)) dy
=§ oy, +(s(1-4)-K)y,
(B-7)
The integral(/, in (B-7) above can be evaluated in terms of tieenmplete gamma function, by

applying the change of varialfie exp(y)and integrating by parts, yielding the followinggion:

v, = I : yexp(y —exp(y) )dy = [~ expexp(y)) - T (0,exp())]";

(B-8)
=exp(-expH)) +I (0,exp(H))
The solution of integrall/, in (B-7) is:
v, = [ expy-expy) dy=[-exd-exp())]; = exp(-expH)) (8-9)

Combining results fot/; and{/, and rearranging, we obtain a closed form for tE&/@all option

price:
C,(K)=e™™ l& ((1— u+o)e® +or (0" ))— Ke™ J (B-10)

Following a similar procedure, the closed form sioluof the GEV model for the put option price
whené& = 0 is found to be:

P(K)=e™ lK (e‘eh -e* )— S ((1— U+o) (e‘eh -e* )+ or(,e",e" ))J (B-11)

APPENDIX C
Simplification for deep in the money options

The GEV option pricing equation in (22) can be difiga for the special case when the call
option is deep in the money, 5>> K. In that case, the terms involvikhcan be simplified, and as
_H V¢
e’

-1/¢&

- 1, itimplies thatH - 0. Substituting these approximations into the cptlan

equation in (22) and rearranging, the call optidngobecomes a linear function If

C.(K) :e—r(T—t){S(l—/j+%(1—r(l—f))]—K} (C-1)

The mean of the standardized GEV negative retlrnslistribution is given by (see Dowd, 2002,
p.273):
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EgEV[LT] :/J—%(l—l_(l—f)) (C-2)

Using the definition in (7) in terms of negativéums, L, =— R =1-S./S , and applying the
expectations operator:

E(?EV[ST] = S(l_ EC?EV[LT]): S(l_,u"'%(l_ r(l_f))j (C-3)

To satisfy the martingale condition in (6), it Isar that the expression in the last bracket cataken
to be ™ or the GEV risk neutral compounded return. Thuscan rewrite the simplified equation

for the call option in (C-1) to yield the resul/gn in (25):

C(K) =e ™I (Egy [S]-K)=§ -7k (C-4)

APPENDIX D
Empirical distribution of the FTSE100 index, GEV based RND and the Girsanov Theorem

Exhibit D1 below displays the empirical distributicas a histogram, of rolling monthly
negative returns for the FTSE100 index, from 199ZG09. We use monthly returns to represent a
typical maturity horizon for the traded option ingal RND method. We can clearly observe that a fat
tail occurs for losses on the right hand side, evttiere is no evidence of fat tailedness for gainghe
left hand side.

Overlaid on top of the empirical distriton we have plotted the fitted normal distribuatias
per the Black-Scholes model, as well as the enghiéEV distribution. The normal distribution
function is only plotted between + 3 and -3 stadd#gviations, to indicate where over 99% of the
probability mass is governed by the normal distidru The exhibit shows that the empirical GEV

distribution for negative losses has a long riglitand a truncated left one.

Exhibit D1
Empirical distribution of monthly negative returnsfor the FTSE 100 index

Distribution of monthly negative returns for the FTSE 100 index
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_ Empirical distribution
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We need to verify that the Q-impossible events iethby the conditions for the GEV RND
function in equation (11) are not P-possible.

Exhibit D2
Time series of truncation points, and realised rolling monthly FTSE 100 returns
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< Right tail truncation = Left tail truncation < Monthly rolling FTSE100 returns

We obtain the daily implied tail shape parametérand the precise truncation values that are
obtained in terms of the upper bound (maximum dafibtail or gains) and lower bound (maximum
loss, right tail for losses). This has been plotteBxhibit D2 along with the realized negativeursis
which is centred on zero percentage returns. Maieless stringent truncation values for retums i
excess of +/- 100% are not shown in the plot. déa for the upper and lower truncations values
visible in the plot constitute only 45% of all pdde days and on a large proportion of other dags t
Q-possible range of percentage gains and losseswedl beyond even the +/- 100% band. As can be
seen at no time does the realized returns vidhdrtincation points given by the implied tail shap
parameterg, for the GEV based RND.

ENDNOTES
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