Network Risk and Key Players: A Structural Analysis of Interbank Liquidity

Edward Denbee♦ Christian Julliard*†
Ye Li‡ Kathy Yuan*†

*London School of Economics, †CEPR ◇Bank of England ‡Columbia University

ESRC, February 2014

The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England.
The Big Picture

- Recent crisis stressed the need of understanding **systemic risk** generation and exposure in the banking industry.
- Traditional regulatory tools focused on bank-specific variables (e.g. capital ratios) and risk (e.g. default probabilities).
- Macro-prudential regulation seeks tools to quantify the systemic implication of individual bank’s behavior ⇒ e.g. banks that generate more systemic risk could face more stringent requirements.

Our paper: develops such a tool using **network theory**.

- Using a linear quadratic model, we can identify:
 1. the amplification mechanism, or multiplier, of liquidity shocks;
 2. the liquidity **level** key players (for bailout?);
 3. the liquidity **risk** key players (to regulate?).

- We also have implications for the efficiency of monetary policy interventions, liquidity injections, and Quantitative Easing.
Recent crisis stressed the need of understanding systemic risk generation and exposure in the banking industry.

Traditional regulatory tools focused on bank-specific variables (e.g. capital ratios) and risk (e.g. default probabilities).

Macro-prudential regulation seeks tools to quantify the systemic implication of individual bank’s behavior ⇒ e.g. banks that generate more systemic risk could face more stringent requirements.

Our paper: develops such a tool using network theory.

Using a linear quadratic model, we can identify:
1. the amplification mechanism, or multiplier, of liquidity shocks;
2. the liquidity level key players (for bailout?);
3. the liquidity risk key players (to regulate?).

We also have implications for the efficiency of monetary policy interventions, liquidity injections, and Quantitative Easing.
Recent crisis stressed the need of understanding systemic risk generation and exposure in the banking industry.

Traditional regulatory tools focused on bank-specific variables (e.g. capital ratios) and risk (e.g. default probabilities).

Macro-prudential regulation seeks tools to quantify the systemic implication of individual bank’s behavior ⇒ e.g. banks that generate more systemic risk could face more stringent requirements.

Our paper: develops such a tool using network theory.

Using a linear quadratic model, we can identify:

1. the amplification mechanism, or multiplier, of liquidity shocks;
2. the liquidity level key players (for bailout?);
3. the liquidity risk key players (to regulate?).

We also have implications for the efficiency of monetary policy interventions, liquidity injections, and Quantitative Easing.
Recent crisis stressed the need of understanding systemic risk generation and exposure in the banking industry. Traditional regulatory tools focused on bank-specific variables (e.g. capital ratios) and risk (e.g. default probabilities).

Macro-prudential regulation seeks tools to quantify the systemic implication of individual bank’s behavior ⇒ e.g. banks that generate more systemic risk could face more stringent requirements.

Our paper: develops such a tool using network theory.

Using a linear quadratic model, we can identify:
1. the amplification mechanism, or multiplier, of liquidity shocks;
2. the liquidity level key players (for bailout?);
3. the liquidity risk key players (to regulate?).

We also have implications for the efficiency of monetary policy interventions, liquidity injections, and Quantitative Easing.
Recent crisis stressed the need of understanding systemic risk generation and exposure in the banking industry.

Traditional regulatory tools focused on bank-specific variables (e.g. capital ratios) and risk (e.g. default probabilities).

Macro-prudential regulation seeks tools to quantify the systemic implication of individual bank’s behavior ⇒ e.g. banks that generate more systemic risk could face more stringent requirements.

Our paper: develops such a tool using network theory.

- Using a linear quadratic model, we can identify:
 1. the amplification mechanism, or multiplier, of liquidity shocks;
 2. the liquidity level key players (for bailout?);
 3. the liquidity risk key players (to regulate?).

- We also have implications for the efficiency of monetary policy interventions, liquidity injections, and Quantitative Easing.
Recent crisis stressed the need of understanding systemic risk generation and exposure in the banking industry.

Traditional regulatory tools focused on bank-specific variables (e.g. capital ratios) and risk (e.g. default probabilities).

Macro-prudential regulation seeks tools to quantify the systemic implication of individual bank’s behavior ⇒ e.g. banks that generate more systemic risk could face more stringent requirements.

Our paper: develops such a tool using network theory.

Using a linear quadratic model, we can identify:

1. the amplification mechanism, or multiplier, of liquidity shocks;
2. the liquidity level key players (for bailout?);
3. the liquidity risk key players (to regulate?).

We also have implications for the efficiency of monetary policy interventions, liquidity injections, and Quantitative Easing.
Recent crisis stressed the need of understanding systemic risk generation and exposure in the banking industry. Traditional regulatory tools focused on bank-specific variables (e.g. capital ratios) and risk (e.g. default probabilities). Macro-prudential regulation seeks tools to quantify the systemic implication of individual bank’s behavior ⇒ e.g. banks that generate more systemic risk could face more stringent requirements.

Our paper: develops such a tool using network theory. Using a linear quadratic model, we can identify:
1. the amplification mechanism, or multiplier, of liquidity shocks;
2. the liquidity level key players (for bailout?);
3. the liquidity risk key players (to regulate?).

We also have implications for the efficiency of monetary policy interventions, liquidity injections, and Quantitative Easing.
Recent crisis stressed the need of understanding systemic risk generation and exposure in the banking industry. Traditional regulatory tools focused on bank-specific variables (e.g. capital ratios) and risk (e.g. default probabilities). Macro-prudential regulation seeks tools to quantify the systemic implication of individual bank’s behavior ⇒ e.g. banks that generate more systemic risk could face more stringent requirements.

Our paper: develops such a tool using network theory. Using a linear quadratic model, we can identify:

1. the amplification mechanism, or multiplier, of liquidity shocks;
2. the liquidity level key players (for bailout?)
3. the liquidity risk key players (to regulate?).

We also have implications for the efficiency of monetary policy interventions, liquidity injections, and Quantitative Easing.
Recent crisis stressed the need of understanding systemic risk generation and exposure in the banking industry.

Traditional regulatory tools focused on bank-specific variables (e.g. capital ratios) and risk (e.g. default probabilities).

Macro-prudential regulation seeks tools to quantify the systemic implication of individual bank’s behavior ⇒ e.g. banks that generate more systemic risk could face more stringent requirements.

Our paper: develops such a tool using network theory.

Using a linear quadratic model, we can identify:

1. the amplification mechanism, or multiplier, of liquidity shocks;
2. the liquidity level key players (for bailout?);
3. the liquidity risk key players (to regulate?).

We also have implications for the efficiency of monetary policy interventions, liquidity injections, and Quantitative Easing.
Recent crisis stressed the need of understanding systemic risk generation and exposure in the banking industry.

Traditional regulatory tools focused on bank-specific variables (e.g. capital ratios) and risk (e.g. default probabilities).

Macro-prudential regulation seeks tools to quantify the systemic implication of individual bank’s behavior ⇒ e.g. banks that generate more systemic risk could face more stringent requirements.

Our paper: develops such a tool using network theory.

Using a linear quadratic model, we can identify:

1. the amplification mechanism, or multiplier, of liquidity shocks;
2. the liquidity level key players (for bailout?);
3. the liquidity risk key players (to regulate?).

We also have implications for the efficiency of monetary policy interventions, liquidity injections, and Quantitative Easing.
On average, in 2009, £700bn of transactions were settled every day across the two UK systems, CREST and CHAPS: the UK nominal GDP settled every two days.

Daily Gross Settlement requires large intraday liquidity buffers.

Almost all banks in CHAPS regularly have intraday liquidity exposures in excess of £1bn to individual counterparties. For larger banks these exposures are regularly greater than £3bn.

We study banks’ intraday liquidity holding decision in the network, and its implications for systemic liquidity risk.
The Case Study: Intraday Liquidity in Payment System

- On average, in 2009, £700bn of transactions were settled every day across the two UK systems, CREST and CHAPS: the UK nominal GDP settled every two days.
- Daily Gross Settlement requires large intraday liquidity buffers.
- Almost all banks in CHAPS regularly have intraday liquidity exposures in excess of £1bn to individual counterparties. For larger banks these exposures are regularly greater than £3bn.

⇒ We study banks’ intraday liquidity holding decision in the network, and its implications for systemic liquidity risk.
On average, in 2009, £700bn of transactions were settled every day across the two UK systems, CREST and CHAPS: the UK nominal GDP settled every two days.

Daily Gross Settlement requires large intraday liquidity buffers.

Almost all banks in CHAPS regularly have intraday liquidity exposures in excess of £1bn to individual counterparties. For larger banks these exposures are regularly greater than £3bn.

We study banks’ intraday liquidity holding decision in the network, and its implications for systemic liquidity risk.
The Case Study: Intraday Liquidity in Payment System

- On average, in 2009, £700bn of transactions were settled every day across the two UK systems, CREST and CHAPS: the UK nominal GDP settled every two days.
- Daily Gross Settlement requires large intraday liquidity buffers.
- Almost all banks in CHAPS regularly have intraday liquidity exposures in excess of £1bn to individual counterparties. For larger banks these exposures are regularly greater than £3bn.

⇒ We study banks’ intraday liquidity holding decision in the network, and its implications for systemic liquidity risk.
On average, in 2009, £700bn of transactions were settled every day across the two UK systems, CREST and CHAPS: the UK nominal GDP settled every two days.

Daily Gross Settlement requires large intraday liquidity buffers.

Almost all banks in CHAPS regularly have intraday liquidity exposures in excess of £1bn to individual counterparties. For larger banks these exposures are regularly greater than £3bn.

⇒ We study banks’ intraday liquidity holding decision in the network, and its implications for systemic liquidity risk.
Why the Network Might Matter?

Several possible network effects, e.g.:
- domino/contagion (e.g. Gai & Kapadia (2010));
- free riding/strategic substitution (e.g. Bhattacharya & Gale (1987));
- economies of scale/"leverage stacks" strategic complementarity (e.g. Katz & Shapiro (1985), Moore (2011));

Our paper: ex-ante agnostic about network role and relevance.
- Flexible parametrization allows different “directions” of network effects.
- Allow network role to change over time.
 ⇒ Let the data speak:
 - Decompose risk into exogenous and network generated parts
 ⇒ time varying network generates heteroskedastic liquidity.
 - Construct Network Impulse-Response Functions to individual banks’ shocks ⇒ akin to variance decomposition.
Why the Network Might Matter?

Several possible network effects, e.g.:
- domino/contagion (e.g. Gai & Kapadia (2010));
- free riding/strategic substitution (e.g. Bhattacharya & Gale (1987));
- economies of scale/"leverage stacks" strategic complementarity (e.g. Katz & Shapiro (1985), Moore (2011));

Our paper: ex-ante agnostic about network role and relevance.
- Flexible parametrization allows different “directions” of network effects.
- Allow network role to change over time.
 ⇒ Let the data speak:
 - Decompose risk into exogenous and network generated parts
 ⇒ time varying network generates heteroskedastic liquidity.
 - Construct Network Impulse-Response Functions to individual banks’ shocks ⇒ akin to variance decomposition.
Why the Network Might Matter?

Several possible network effects, e.g.:
- domino/contagion (e.g. Gai & Kapadia (2010));
- free riding/strategic substitution (e.g. Bhattacharya & Gale (1987));
- economies of scale/"leverage stacks" strategic complementarity (e.g. Katz & Shapiro (1985), Moore (2011));

Our paper: ex-ante agnostic about network role and relevance.
- Flexible parametrization allows different “directions” of network effects.
- Allow network role to change over time.
⇒ Let the data speak:
 - Decompose risk into exogenous and network generated parts
 ⇒ time varying network generates heteroskedastic liquidity.
 - Construct Network Impulse-Response Functions to individual banks’ shocks ⇒ akin to variance decomposition.
Why the Network Might Matter?

Several possible network effects, e.g.:
- domino/contagion (e.g. Gai & Kapadia (2010));
- free riding/strategic substitution (e.g. Bhattacharya & Gale (1987));
- economies of scale/"leverage stacks" strategic complementarity (e.g. Katz & Shapiro (1985), Moore (2011));

Our paper: ex-ante agnostic about network role and relevance.
- Flexible parametrization allows different "directions" of network effects.
- Allow network role to change over time.

⇒ Let the data speak:
- Decompose risk into exogenous and network generated parts ⇒ time varying network generates heteroskedastic liquidity.
- Construct Network Impulse-Response Functions to individual banks’ shocks ⇒ akin to variance decomposition.
Why the Network Might Matter?

Several possible network effects, e.g.:
- domino/contagion (e.g. Gai & Kapadia (2010));
- free riding/strategic substitution (e.g. Bhattacharya & Gale (1987));
- economies of scale/"leverage stacks" strategic complementarity (e.g. Katz & Shapiro (1985), Moore (2011));

Our paper: ex-ante agnostic about network role and relevance.
- Flexible parametrization allows different “directions” of network effects.
- Allow network role to change over time.
 ⇒ Let the data speak:
 - Decompose risk into exogenous and network generated parts
 ⇒ time varying network generates heteroskedastic liquidity.
 - Construct Network Impulse-Response Functions to individual banks’ shocks ⇒ akin to variance decomposition.
Why the Network Might Matter?

Several possible network effects, e.g.:
- domino/contagion (e.g. Gai & Kapadia (2010));
- free riding/strategic substitution (e.g. Bhattacharya & Gale (1987));
- economies of scale/"leverage stacks" strategic complementarity (e.g. Katz & Shapiro (1985), Moore (2011));

Our paper: ex-ante agnostic about network role and relevance.
- Flexible parametrization allows different “directions” of network effects.
- Allow network role to change over time.
 ⇒ Let the data speak:
 - Decompose risk into exogenous and network generated parts
 ⇒ time varying network generates heteroskedastic liquidity.
 - Construct Network Impulse-Response Functions to individual banks’ shocks ⇒ akin to variance decomposition.
Why the Network Might Matter?

Several possible network effects, e.g.:

- domino/contagion (e.g. Gai & Kapadia (2010));
- free riding/strategic substitution (e.g. Bhattacharya & Gale (1987));
- economies of scale/"leverage stacks" strategic complementarity (e.g. Katz & Shapiro (1985), Moore (2011));

Our paper: ex-ante agnostic about network role and relevance.

- Flexible parametrization allows different “directions” of network effects.
- Allow network role to change over time.

⇒ Let the data speak:

- Decompose risk into exogenous and network generated parts
 ⇒ time varying network generates heteroskedastic liquidity.
- Construct **Network Impulse-Response Functions** to individual banks’ shocks ⇒ akin to variance decomposition.
Why the Network Might Matter?

Several possible network effects, e.g.:

- domino/contagion (e.g. Gai & Kapadia (2010));
- free riding/strategic substitution (e.g. Bhattacharya & Gale (1987));
- economies of scale/"leverage stacks" strategic complementarity (e.g. Katz & Shapiro (1985), Moore (2011));

Our paper: ex-ante agnostic about network role and relevance.
- Flexible parametrization allows different “directions” of network effects.
- Allow network role to change over time.

⇒ Let the data speak:

- Decompose risk into exogenous and network generated parts ⇒ time varying network generates heteroskedastic liquidity.
- Construct **Network Impulse-Response Functions** to individual banks’ shocks ⇒ akin to variance decomposition.
Why the Network Might Matter?

Several possible network effects, e.g.:
- domino/contagion (e.g. Gai & Kapadia (2010));
- free riding/strategic substitution (e.g. Bhattacharya & Gale (1987));
- economies of scale/"leverage stacks" strategic complementarity (e.g. Katz & Shapiro (1985), Moore (2011));

Our paper: ex-ante agnostic about network role and relevance.
- Flexible parametrization allows different “directions” of network effects.
- Allow network role to change over time.
⇒ Let the data speak:
 - Decompose risk into exogenous and network generated parts ⇒ time varying network generates heteroskedastic liquidity.
 - Construct Network Impulse-Response Functions to individual banks’ shocks ⇒ akin to variance decomposition.
1. Theoretical Framework
 - Network Specification
 - Bank Objective Function and Nash Equilibrium
 - Risk, and Level, Key Players

2. Empirical Analysis
 - Empirical Specification
 - Network and Data Description
 - Estimation Results

3. Related Literature

4. Conclusions

Appendix
Outline

1. Theoretical Framework
 - Network Specification
 - Bank Objective Function and Nash Equilibrium
 - Risk, and Level, Key Players

2. Empirical Analysis
 - Empirical Specification
 - Network and Data Description
 - Estimation Results

3. Related Literature

4. Conclusions

> Appendix
Network Specification

- A directed and weighted network of \(n \) banks.

Network \(g \): characterized by \(n \)-square adjacency matrix \(G \) with elements \(g_{i,j} \), and \(g_{i,i} = 0 \).

\(g_{i,j \neq i} \): the fraction of borrowing by Bank \(i \) from Bank \(j \).

\(\Rightarrow \) \(G \) is a (right) stochastic matrix and is not symmetric

- A centrality metric (à la Katz-Bonacich) with decay \(\phi \)

\[
M(\phi, G) = I + \phi G + \phi^2 G^2 + \phi^3 G^3 + ... = \sum_{k=0}^{\infty} \phi^k G^k.
\]

Note: If \(|\phi| < 1 \), this converges to \((I - \phi G)^{-1} \).
Network Specification

- A directed and weighted network of n banks.

 Network g : characterized by n-square adjacency matrix G with elements $g_{i,j}$, and $g_{i,i} = 0$.

 $g_{i,j \neq i}$: the fraction of borrowing by Bank i from Bank j.

 \Rightarrow G is a (right) stochastic matrix and is not symmetric.

- A centrality metric (à la Katz-Bonacich) with decay ϕ

 $M(\phi, G) = I + \phi G + \phi^2 G^2 + \phi^3 G^3 + \ldots = \sum_{k=0}^{\infty} \phi^k G^k$.

 Note: If $|\phi| < 1$, this converges to $(I - \phi G)^{-1}$.
Network Specification

- A directed and weighted network of n banks.

Network g: characterized by n-square adjacency matrix G with elements $g_{i,j}$, and $g_{i,i} = 0$.

$g_{i,j \neq i}$: the fraction of borrowing by Bank i from Bank j.

\Rightarrow G is a (right) stochastic matrix and is not symmetric

- A centrality metric (à la Katz-Bonacich) with decay ϕ

$$M(\phi, G) = I + \phi G + \phi^2 G^2 + \phi^3 G^3 + \ldots = \sum_{k=0}^{\infty} \phi^k G^k.$$

Note: If $|\phi| < 1$, this converges to $(I - \phi G)^{-1}$.
Bank Objective Function

- **Bank \(i \) decision variables:**

 \[q_i : \text{liquidity level of bank } i \text{ absent bilateral effects.} \]

 \[q_i = q_i(x) := \alpha_i + \sum_{m=1}^{M} \beta_m x_i^m + \sum_{p=1}^{P} \beta_p x^p \]

 \[z_i : \text{the network component of liquidity buffer stock.} \]

 \[\Rightarrow l_i = q_i + z_i : \text{is the observable liquidity holding of bank } i. \]
Bank Objective Function

- **Bank i decision variables:**

 \[q_i : \text{liquidity level of bank } i \text{ absent bilateral effects.} \]

 \[
 q_i = q_i(x) := \alpha_i + \sum_{m=1}^{M} \beta_m x_i^m + \sum_{p=1}^{P} \beta_p x^p
 \]

 \[z_i : \text{the network component of liquidity buffer stock.} \]

 \[l_i = q_i + z_i : \text{is the observable liquidity holding of bank } i. \]
Bank Objective Function

- **Bank \(i \) decision variables:**

 \[q_i : \text{liquidity level of bank } i \text{ absent bilateral effects.} \]

 \[
 q_i = q_i(x) := \alpha_i + \sum_{m=1}^{M} \beta_m x_i^m + \sum_{p=1}^{P} \beta_p x_i^p
 \]

 \[z_i : \text{the network component of liquidity buffer stock.} \]

 \[l_i = q_i + z_i : \text{is the observable liquidity holding of bank } i. \]
Bank Objective Function

- Bank i decision variables:
 - q_i : liquidity level of bank i absent bilateral effects.

 $q_i = q_i(x) := \alpha_i + \sum_{m=1}^{M} \beta_m x^m_i + \sum_{p=1}^{P} \beta_p x^p_i$

 - z_i : the network component of liquidity buffer stock.
 - $l_i = q_i + z_i$: is the observable liquidity holding of bank i.

A quadratic payoff function for buffer stock liquidity

\[u_i(z_i|g) = \hat{\mu}_i \left(z_i + \psi \sum_j g_{ij} z_j \right) - \frac{1}{2} \gamma \left(z_i + \psi \sum_{j \neq i} g_{ij} z_j \right)^2 + z_i \delta \sum_j g_{ij} z_j \]

\[\hat{\mu}_i / \gamma = \bar{\mu}_i + \nu_i \sim i.i.d (0, \sigma_i^2) \]

bilateral network influence:

\[\frac{\partial^2 u_i(z|g)}{\partial z_i \partial z_j} = (\delta - \gamma \psi) g_{ij} \]

Note: \(g \) predetermined at decision time (but can change over time).
A quadratic payoff function for buffer stock liquidity

\[u_i(z_i|g) = \hat{\mu}_i \left(z_i + \psi \sum_j g_{ij} z_j \right) - \frac{1}{2} \gamma \left(z_i + \psi \sum_{j \neq i} g_{ij} z_j \right)^2 + z_i \delta \sum_j g_{ij} z_j \]

- Accessible Liquidity
- Collateralized Liquidity

\(\hat{\mu}_i / \gamma = \bar{\mu}_i + \nu_i \sim i.i.d \ (0, \sigma^2_i) \)

bilateral network influence:

\[\frac{\partial^2 u_i(z|g)}{\partial z_i \partial z_j} = (\delta - \gamma \psi) g_{ij} \]

Note: \(g \) predetermined at decision time (but can change over time).
A quadratic payoff function for buffer stock liquidity

\[u_i(z_i|g) = \hat{\mu}_i \left(z_i + \psi \sum_j g_{ij} z_j \right) - \frac{1}{2} \gamma \left(z_i + \psi \sum_{j \neq i} g_{ij} z_j \right)^2 + z_i \delta \sum_j g_{ij} z_j \]

\[\hat{\mu}_i / \gamma = \bar{\mu}_i + \nu_i \sim i.i.d \left(0, \sigma_i^2 \right) \]

bilateral network influence:

\[\frac{\partial^2 u_i(z|g)}{\partial z_i \partial z_j} = (\delta - \gamma \psi) g_{ij} \]

Note: \(g \) predetermined at decision time (but can change over time).
A quadratic payoff function for buffer stock liquidity

$$u_i(z_i|g) = \hat{\mu}_i \left(z_i + \psi \sum_j g_{ij} z_j \right) - \frac{1}{2} \gamma \left(z_i + \psi \sum_{j \neq i} g_{ij} z_j \right)^2 + z_i \delta \sum_j g_{ij} z_j$$

Accessable Liquidity

Collateralized Liquidity

$$\hat{\mu}_i / \gamma = \bar{\mu}_i + \nu_i \sim i.i.d \left(0, \sigma_i^2 \right)$$

- bilateral network influence:

$$\frac{\partial^2 u_i(z|g)}{\partial z_i \partial z_j} = (\delta - \gamma \psi) g_{ij}$$

Note: g predetermined at decision time (but can change over time).
Bank Objective Function cont’d

- A quadratic payoff function for buffer stock liquidity

\[u_i(z_i|g) = \hat{\mu}_i \left(z_i + \psi \sum_j g_{ij} z_j \right) - \frac{1}{2} \gamma \left(z_i + \psi \sum_{j \neq i} g_{ij} z_j \right)^2 + z_i \delta \sum_j g_{ij} z_j \]

\[\hat{\mu}_i / \gamma = \bar{\mu}_i + \nu_i \sim i.i.d \left(0, \sigma_i^2 \right) \]

- bilateral network influence:

\[\frac{\partial^2 u_i (z|g)}{\partial z_i \partial z_j} = (\delta - \gamma \psi) g_{ij} \]

Note : \(g \) predetermined at decision time (but can change over time).
Eq. \(^{um} \) : (Nash) If \(|\phi| < 1\)

\[
\begin{align*}
 z_i^* &= \bar{\mu}_i + \phi \sum_{j=1}^{n} g_{i,j} z_j + v_i \\
 \Rightarrow l_i^* &= q_i(x) + z_i^* = q_i(x) + \{ M(\phi, G) \}_i. \mu \\

 \text{where } \mu := \gamma^{-1} [\hat{\mu}_1, ..., \hat{\mu}_n]', \{ \} _i. \text{ is the row operator, and}
 \\
 \phi := \frac{\delta}{\gamma} - \psi
\end{align*}
\]

Note:
If \(\phi > 0 \) complementarity (reciprocate/herding/leverage stacks e.g. Moore (2011)).
If \(\phi < 0 \) substitutability (free ride à la Bhattacharya and Gale (1987)).
(Decentralized) Equilibrium Outcome

\[\text{Eq.}^{um} : \text{(Nash) If } |\phi| < 1 \]

\[z_i^* = \mu_i + \phi \sum_{j=1}^{n} g_{i,j} z_j + \nu_i \]

\[\Rightarrow l_i^* = q_i(x) + z_i^* = q_i(x) + \{M(\phi, G)\}_i \mu \]

where \(\mu := \gamma^{-1} [\hat{\mu}_1, \ldots, \hat{\mu}_n]' \), \(\{\}_{i} \) is the row operator, and

\[\phi := \frac{\delta}{\gamma - \psi} \]

Note:

If \(\phi > 0 \) complementarity (reciprocate/herding/leverage stacks e.g. Moore (2011)).

If \(\phi < 0 \) substitutability (free ride à la Bhattacharya and Gale (1987)).
The total liquidity originating from the network externalities is

$$1'z^* = 1'M(\phi, G)\bar{\mu} + 1'M(\phi, G)v$$

where $z^* \equiv [z_1^*, ..., z_n^*]'$, $\bar{\mu} \equiv [\bar{\mu}_1, ..., \bar{\mu}_n]'$, $v \equiv [v_1, ..., v_n]'$

\Rightarrow tradeoff: both terms increasing in ϕ (for $\bar{\mu} > 0$).

Risk Key Player: (the one to worry about...)

$$\max_i \frac{\partial 1'z^*}{\partial v_i}\sigma_i = \max_i 1'\{M(\phi, G)\}_i \sigma_i \rightarrow \text{outdegree centrality}$$

Level Key Player: (the one you might want to bailout...)

$$\max_i E[1'z^* - 1'z_i^*] = \max_i \{M(\phi, G)\}_i \bar{\mu} + 1'\{M(\phi, G)\}_i \bar{\mu}_i - m_{i,i} \bar{\mu}_i$$

indegree centrality + shock analogous – correct double counting
The total liquidity originating from the network externalities is

\[1'z^* = 1'M(\phi, G) \bar{\mu} + 1'M(\phi, G) v \]

where \(z^* \equiv [z_1^*, ..., z_n^*]' \), \(\bar{\mu} \equiv [\bar{\mu}_1, ..., \bar{\mu}_n]' \), \(v \equiv [v_1, ..., v_n]' \)

⇒ tradeoff: both terms increasing in \(\phi \) (for \(\bar{\mu} > 0 \)).

Risk Key Player: (the one to worry about...)

\[
\max_i \frac{\partial 1'z^*}{\partial v_i} \sigma_i = \max_i 1' \{M(\phi, G)\}_i \sigma_i \rightarrow \text{outdegree centrality}
\]

Level Key Player: (the one you might want to bailout...)

\[
\max_i E [1'z^* - 1'z^*_i] = \max_i \{M(\phi, G)\}_i \bar{\mu} + 1' \{M(\phi, G)\}_i \bar{\mu}_i - m_{i,i} \bar{\mu}_i
\]

indegree centrality + shock analogous – correct double counting
Key Players

The total liquidity originating from the network externalities is

\[1'z^* = 1'M(\phi, G)\bar{\mu} + 1'M(\phi, G)v \]

level effect

risk effect

where \(z^* \equiv [z_1^*, ..., z_n^*]' \), \(\bar{\mu} \equiv [\bar{\mu}_1, ..., \bar{\mu}_n]' \), \(v \equiv [v_1, ..., v_n]' \)

\[\Rightarrow \text{tradeoff: both terms increasing in } \phi \text{ (for } \bar{\mu} > 0). \]

Risk Key Player: (the one to worry about...)

\[\max_i \frac{\partial 1'z^*}{\partial v_i} \sigma_i = \max_i 1' \{M(\phi, G)\}_i \sigma_i \rightarrow \text{outdegree centrality} \]

Level Key Player: (the one you might want to bailout...)

\[\max_i E[1'z^* - 1'z_i^*] = \max_i \{M(\phi, G)_i, \bar{\mu} + 1' \{M(\phi, G)\}_i \bar{\mu}_i - m_{i,i}\bar{\mu}_i \]

indegree centrality + shock analogous − correct double counting
Key Players

The total liquidity originating from the network externalities is

\[1'z^* = 1'M(\phi, G)\bar{\mu} + 1'M(\phi, G)v \]

where \(z^* \equiv [z^*_1, \ldots, z^*_n]' \), \(\bar{\mu} \equiv [\bar{\mu}_1, \ldots, \bar{\mu}_n]' \), \(v \equiv [v_1, \ldots, v_n]' \)

\[\Rightarrow \] tradeoff: both terms increasing in \(\phi \) (for \(\bar{\mu} > 0 \)).

Risk Key Player: (the one to worry about...)

\[\max_i \frac{\partial 1'z^*}{\partial v_i} \sigma_i = \max_i 1'\{M(\phi, G)\}_n \sigma_i \rightarrow \text{outdegree centrality} \]

Level Key Player: (the one you might want to bailout...)

\[\max_i E [1'z^* - 1'z^*_i] = \max_i \{M(\phi, G)_i \bar{\mu} + 1'\{M(\phi, G)\}_i \bar{\mu}_i - m_{i,i}\bar{\mu}_i \]

indegree centrality + shock analogous - correct double counting
The total liquidity originating from the network externalities is

\[1'z^* = 1'M(\phi, G)\bar{\mu} + 1'M(\phi, G)v \]

where \(z^* \equiv [z_1^*, ..., z_n^*]' \), \(\bar{\mu} \equiv [\bar{\mu}_1, ..., \bar{\mu}_n]' \), \(v \equiv [v_1, ..., v_n]' \)

⇒ tradeoff: both terms increasing in \(\phi \) (for \(\bar{\mu} > 0 \)).

Risk Key Player: (the one to worry about...)

\[\max_i \frac{\partial 1'z^*}{\partial v_i} \sigma_i = \max_i 1'\{M(\phi, G)\}_i \sigma_i \rightarrow \text{outdegree centrality} \]

Level Key Player: (the one you might want to bailout...)

\[\max_i E[1'z^* - 1'z_i^*] = \max_i \{M(\phi, G)\}_i \bar{\mu} + 1'\{M(\phi, G)\}_i \bar{\mu}_i - m_{i,i} \bar{\mu}_i \]

indegree centrality + shock analogous − correct double counting
The total liquidity originating from the network externalities is

\[1'z^* = 1'M(\phi, G) \bar{\mu} + 1'M(\phi, G) \nu \]

where \(z^* \equiv [z_1^*, ..., z_n^*]' \), \(\bar{\mu} \equiv [\bar{\mu}_1, ..., \bar{\mu}_n]' \), \(\nu \equiv [\nu_1, ..., \nu_n]' \)

\(\Rightarrow \) tradeoff: both terms increasing in \(\phi \) (for \(\bar{\mu} > 0 \)).

Risk Key Player: (the one to worry about...)

\[\max_i \frac{\partial 1'z^*}{\partial v_i} \sigma_i = \max_i 1' \{M(\phi, G)\}_i \sigma_i \rightarrow \text{outdegree centrality} \]

Level Key Player: (the one you might want to bailout...)

\[\max_i E [1'z^* - 1'z^*_i] = \max_i \{M(\phi, G)\}_i \bar{\mu} + 1' \{M(\phi, G)\}_i \bar{\mu}_i - m_{i,i} \bar{\mu}_i \]

indegree centrality + shock analogous − correct double counting
The total liquidity originating from the network externalities is

$$1'z^* = 1'M(\phi, G)\bar{\mu} + 1'M(\phi, G)v$$

level effect risk effect

where

$$z^* \equiv [z_1^*, ..., z_n^*]'$$,
$$\bar{\mu} \equiv [\bar{\mu}_1, ..., \bar{\mu}_n]'$$,
$$v \equiv [v_1, ..., v_n]'$$

⇒ tradeoff: both terms increasing in ϕ (for $\bar{\mu} > 0$).

Risk Key Player: (the one to worry about...)

$$\max_i \frac{\partial 1'z^*}{\partial v_i} \sigma_i = \max_i 1' \{M(\phi, G)\}_i \sigma_i \rightarrow \text{outdegree centrality}$$

Level Key Player: (the one you might want to bailout...)

$$\max_i E \left[1'z^* - 1'z^*_{\setminus i}\right] = \max_i \{M(\phi, G)\}_i \bar{\mu} + 1' \{M(\phi, G)\}_i \bar{\mu}_i - m_{i,i} \bar{\mu}_i$$

indegree centrality + shock analogous − correct double counting
Key Players

The total liquidity originating from the network externalities is

\[1'z^* = 1'M(\phi, G)\bar{\mu} + 1'M(\phi, G)v \]

where \(z^* \equiv [z_1^*, ..., z_n^*]' \), \(\bar{\mu} \equiv [\bar{\mu}_1, ..., \bar{\mu}_n]' \), \(v \equiv [v_1, ..., v_n]' \)

\(\Rightarrow \) tradeoff: both terms increasing in \(\phi \) (for \(\bar{\mu} > 0 \)).

Risk Key Player: (the one to worry about...)

\[
\max_i \frac{\partial 1'z^*}{\partial v_i} \sigma_i = \max_i 1' \{M(\phi, G)\}_i \sigma_i \rightarrow \text{outdegree centrality}
\]

Level Key Player: (the one you might want to bailout...)

\[
\max_i E[1'z^* - 1'z_{\setminus i}^*] = \max_i \{M(\phi, G)\}_i \bar{\mu} + 1' \{M(\phi, G)\}_i \bar{\mu} - m_{i,i} \bar{\mu}_i
\]

indegree centrality + shock analogous - correct double counting
A planner chooses \(z_i, i = 1, \ldots, n \) to maximize the total

\[
\max_{z_1, \ldots, z_i, \ldots, z_n} \sum_i \left[\hat{\mu}_i \left(z_i + \psi \sum_j g_{ij} z_j \right) + z_i \delta \sum_j g_{ij} z_j - \frac{1}{2} \gamma \left(z_i + \psi \sum_{j \neq i} g_{ij} z_j \right)^2 \right].
\]

FOC:

\[
z_i = \mu_i + \phi \sum_{j \neq i} g_{ij} z_j + \psi \sum_{j \neq i} g_{ji} \mu_j + \\
\phi \sum_{j \neq i} g_{ji} z_j - \psi^2 \sum_{j \neq i} \sum_m g_{ji} g_{jm} z_m
\]

- decentralized f.o.c.
- neighbors' idiosyncratic valuations of own liquidity
- neighbors' indegree i.e. own outdegree
- volatility of neighbors' accessible network liquidity
1. Theoretical Framework
 - Network Specification
 - Bank Objective Function and Nash Equilibrium
 - Risk, and Level, Key Players

2. Empirical Analysis
 - Empirical Specification
 - Network and Data Description
 - Estimation Results

3. Related Literature

4. Conclusions

Appendix
Theoretical Framework
Empirical Analysis
Conclusions

Empirical Specification
Network and Data Description
Estimation Results

Empirical Model

SEM: the theoretical framework is matched by a **Spatial Error Model**

\[l_{i,t} = \alpha_i + \sum_{m=1}^{M} \beta_{m}^{\text{bank}} x_{i,t}^{m} + \sum_{p=1}^{P} \beta_{p}^{\text{time}} x_{t}^{p} + z_{i,t} \]

\[z_{i,t} = \bar{\mu}_i + \phi \sum_{j=1}^{n} g_{i,j,t} z_{j,t} + \nu_{i,t}, \quad \nu_{i,t} \sim iid \left(0, \sigma_i^2 \right), \]

where \(g_{i,j,t}, x_{i,t}^{m} \) and \(x_{t}^{p} \) are predetermined at time \(t \).

Note:
1. Network as a shock propagation mechanism
 \(\Rightarrow (\text{average}) \) Network Multiplier: \(1 / (1 - \phi) \)
2. Total liquidity, \(L_t \equiv 1'[l_{1,t}, \ldots, l_{n,t}] \), is heteroskedastic:
 \[Var_{t-1} (L_t) = 1' M (\phi, G_t) \text{ diag } \left(\{ \sigma_i^2 \}_{i=1}^{n} \right) M (\phi, G_t)' 1. \]
3. Can perform Q-MLE (\(\phi \) overidentified if \(rank \left(M (\phi, G_t) \right) > 2 \))
Empirical Model

SEM: the theoretical framework is matched by a Spatial Error Model

\[
l_{i,t} = \alpha_i + \sum_{m=1}^{M} \beta_{m}^{bank} x_{i,t}^m + \sum_{p=1}^{P} \beta_{p}^{time} x_{t}^p + z_{i,t}
\]

\[
z_{i,t} = \bar{\mu}_i + \phi \sum_{j=1}^{n} g_{i,j,t} z_{j,t} + \nu_{i,t}, \quad \nu_{i,t} \sim iid \left(0, \sigma_i^2\right),
\]

where \(g_{i,j,t}\), \(x_{i,t}^m\) and \(x_{t}^p\) are predetermined at time \(t\).

Note:

1. Network as a shock propagation mechanism

\(\Rightarrow\) (average) Network Multiplier: \(1 / (1 - \phi)\)

2. Total liquidity, \(L_t \equiv 1' [l_{1,t}, ..., l_{n,t}]\), is heteroskedastic:

\[
Var_{t-1}(L_t) = 1'M(\phi, G_t) \text{diag} \left(\{\sigma_i^2\}_{i=1}^{n}\right) M(\phi, G_t)' 1.
\]

3. Can perform Q-MLE (\(\phi\) overidentified if \(\text{rank}(M(\phi, G_t)) > 2\))
Empirical Model

SEM: the theoretical framework is matched by a **Spatial Error Model**

\[
I_{i,t} = \alpha_i + \sum_{m=1}^{M} \beta_{m}^{bank} x_{i,t}^m + \sum_{p=1}^{P} \beta_{p}^{time} x_{t}^p + z_{i,t}
\]

\[
z_{i,t} = \bar{\mu}_i + \phi \sum_{j=1}^{n} g_{i,j,t} z_{j,t} + \nu_{i,t}, \quad \nu_{i,t} \sim iid \left(0, \sigma_i^2 \right),
\]

where \(g_{i,j,t}, x_{i,t}^m\) and \(x_{t}^p\) are predetermined at time \(t\).

Note:

1. **Network as a shock propagation mechanism**

 \(\Rightarrow\) (average) **Network Multiplier:** \(1/(1 - \phi)\)

2. **Total liquidity**, \(L_t \equiv 1' [l_{1,t}, ..., l_{n,t}]\), is heteroskedastic:

 \[
 Var_{t-1} \left(L_t \right) = 1' M (\phi, G_t) \text{ diag} \left(\{ \sigma_i^2 \}_{i=1}^{n} \right) M (\phi, G_t)' 1.
 \]

3. **Can perform Q-MLE** (\(\phi\) overidentified if \(\text{rank} (M (\phi, G_t)) > 2\))
Empirical Model

SEM: the theoretical framework is matched by a Spatial Error Model

\[
I_{i,t} = \alpha_i + \sum_{m=1}^{M} \beta_{m}^{bank} x_{i,t}^{m} + \sum_{p=1}^{P} \beta_{p}^{time} x_{t}^{p} + z_{i,t}
\]

\[
z_{i,t} = \bar{\mu}_i + \phi \sum_{j=1}^{n} g_{i,j,t} z_{j,t} + \nu_{i,t}, \quad \nu_{i,t} \sim iid \left(0, \sigma_i^2\right),
\]

where \(g_{i,j,t}, x_{i,t}^{m} \) and \(x_{t}^{p} \) are predetermined at time \(t \).

Note:
1. Network as a shock propagation mechanism
 \(\Rightarrow \) (average) **Network Multiplier:** \(1 / (1 - \phi) \)
2. Total liquidity, \(L_t \equiv 1' [l_{1,t}, ..., l_{n,t}] \), is heteroskedastic:

\[
Var_{t-1} (L_t) = 1' M (\phi, G_t) \text{diag} \left(\{\sigma_i^2\}_{i=1}^{n} \right) M (\phi, G_t)' 1.
\]

3. Can perform Q-MLE (\(\phi \) overidentified if \(\text{rank} (M (\phi, G_t)) > 2 \))
Empirical Model

SEM: the theoretical framework is matched by a **Spatial Error Model**

\[
\begin{align*}
I_{i,t} &= \alpha_i + \sum_{m=1}^{M} \beta_{m}^{bank} x_{i,t}^m + \sum_{p=1}^{P} \beta_{p}^{time} x_{t}^p + z_{i,t} \\

z_{i,t} &= \bar{\mu}_i + \phi \sum_{j=1}^{n} g_{i,j,t} z_{j,t} + \nu_{i,t}, \quad \nu_{i,t} \sim iid \left(0, \sigma_i^2\right),
\end{align*}
\]

where \(g_{i,j,t}, x_{i,t}^m\) and \(x_{t}^p\) are predetermined at time \(t\).

Note:
1. Network as a shock propagation mechanism
2. (average) Network Multiplier: \(1 / (1 - \phi)\)
3. Total liquidity, \(L_t \equiv 1'[l_{1,t}, ..., l_{n,t}]\), is heteroskedastic:

\[
Var_{t-1}(L_t) = 1'M(\phi, G_t) \text{diag} \left(\{\sigma_i^2\}_{i=1}^{n}\right) M(\phi, G_t)' 1.
\]
4. Can perform Q-MLE (\(\phi\) overidentified if \(\text{rank}(M(\phi, G_t)) > 2\))
SDM: For robustness, we also consider a direct network effect of banks observable characteristic, liquidity decisions, and possible match specific control variables, $x_{i,j,t}$ (Spatial Durbin Model)

$$l_{i,t} = \bar{\alpha}_i + \sum_{m=1}^{M} \beta_m^{bank} x_{i,t}^m + \sum_{p=1}^{P} \gamma_p^{time} x_{t}^p + \psi \sum_{j=1}^{n} g_{i,j,t} l_{j,t} + \sum_{j=1}^{n} g_{i,j,t} x_{i,j,t} \theta + v_{i,t}$$

Note: if $x_{i,j,t} := \text{vec}(x_{j\neq i,t}^m)'$, $\psi = \phi$, $\theta = -\phi \text{vec}(\beta_m^{bank})$, $\gamma_p^{time} = (1 - \phi) \beta_p^{time} \forall p \Rightarrow$ back to SEM

\Rightarrow this more general spatial structure provides a specification test for our model.
Empirical Model: Specification Test

SDM: For robustness, we also consider a direct network effect of banks observable characteristictic, liquidity decisions, and possible match specific control variables, $x_{i,j,t}$ (Spatial Durbin Model)

$$l_{i,t} = \tilde{\alpha}_i + \sum_{m=1}^{M} \beta_{m}^{\text{bank}} x_{i,t}^m + \sum_{p=1}^{P} \gamma_{p}^{\text{time}} x_{t}^p$$

$$+ \psi \sum_{j=1}^{n} g_{i,j,t} l_{j,t} + \sum_{j=1}^{n} g_{i,j,t} x_{i,j,t} \theta + v_{i,t}$$

Note: if $x_{i,j,t} := \text{vec}(x_{j \neq i,t}^m)'$, $\psi = \phi$, $\theta = -\phi \text{vec}(\beta_{m}^{\text{bank}})$, $\gamma_{p}^{\text{time}} = (1 - \phi) \beta_{p}^{\text{time}} \forall p \Rightarrow \text{back to SEM}$

\Rightarrow this more general spatial structure provides a specification test for our model.
Empirical Model: Specification Test

SDM: For robustness, we also consider a direct network effect of banks observable characteristic, liquidity decisions, and possible match specific control variables, $x_{i,j,t}$ (Spatial Durbin Model)

$$l_{i,t} = \alpha_i + \sum_{m=1}^{M} \beta_{m}^{bank} x_{i,m,t} + \sum_{p=1}^{P} \gamma_{p}^{time} x_{p,t}$$

$$+ \psi \sum_{j=1}^{n} g_{i,j,t} l_{j,t} + \sum_{j=1}^{n} g_{i,j,t} x_{i,j,t} \theta + \nu_{i,t}$$

Note: if $x_{i,j,t} := \text{vec}(x_{j \neq i,t}^{m})'$, $\psi = \phi$, $\theta = -\phi \text{vec}(\beta_{m}^{bank})$, $\gamma_{p}^{time} = (1 - \phi) \beta_{p}^{time} \forall p \Rightarrow \text{back to SEM}$

\Rightarrow this more general spatial structure provides a specification test for our model.
The network impulse-response of total liquidity, L_t, to a one standard deviation shock to bank i is

$$NIRF_i (\phi, G_t, \sigma_i) \equiv \frac{\partial L_t}{\partial \nu_{i,t}} \sigma_i = 1' \{ M (\phi, G_t) \}.i \sigma_i$$

NIRFs:

1. are pinned down by the outdegree centrality and

 $$\text{Risk Key Player} \equiv \arg\max_i NIRF_i (\phi, G_t, \sigma_i)$$

2. account for all direct and indirect links among banks since

 $$1' \{ M (\phi, G_t) \}.i = 1' \{ I + \phi G_t + \phi^2 G_t^2 + \ldots \}.i = 1' \left\{ \sum_{k=0}^{\infty} \phi^k G_k^k \right\}.i$$

3. are a natural decomposition of total liquidity variance

 $$\text{Var}_{t-1} (L_t) \equiv \text{vec} \left(\left\{ NIRF_i (\phi, G_t, \sigma_i) \right\}_{i=1}^n \right)' \text{vec} \left(\left\{ NIRF_i (\phi, G_t, \sigma_i) \right\}_{i=1}^n \right).$$
Network Impulse-Response Functions

- The network impulse-response of total liquidity, \(L_t \), to a one standard deviation shock to bank \(i \) is

\[
NIRF_i (\phi, G_t, \sigma_i) \equiv \frac{\partial L_t}{\partial \nu_{i,t}} \sigma_i = 1' \{ M (\phi, G_t) \} \cdot i \sigma_i
\]

NIRFs:

1. are pinned down by the outdegree centrality and

 \[
 \text{Risk Key Player} \equiv \arg\max_i NIRF_i (\phi, G_t, \sigma_i)
 \]

2. account for all direct and indirect links among banks since

 \[
 1' \{ M (\phi, G_t) \} \cdot i = 1' \{ I + \phi G_t + \phi^2 G_t^2 + \ldots \} \cdot i = 1' \left\{ \sum_{k=0}^{\infty} \phi^k G_t^k \right\} \cdot i
 \]

3. are a natural decomposition of total liquidity variance

 \[
 \text{Var}_{t-1} (L_t) \equiv \text{vec} \left(\{ \text{NIRF}_i (\phi, G_t, \sigma_i) \}_{i=1}^n \right)' \text{vec} \left(\{ \text{NIRF}_i (\phi, G_t, \sigma_i) \}_{i=1}^n \right)
 \]
Network Impulse-Response Functions

- The network impulse-response of total liquidity, L_t, to a one standard deviation shock to bank i is

$$NIRF_i(\phi, G_t, \sigma_i) \equiv \frac{\partial L_t}{\partial \nu_{i,t}} \sigma_i = 1' \{ M(\phi, G_t) \}.i \sigma_i$$

NIRFs:

1. are pinned down by the outdegree centrality and

$$\text{Risk Key Player} \equiv \arg\max_i NIRF_i(\phi, G_t, \sigma_i)$$

2. account for all direct and indirect links among banks since

$$1' \{ M(\phi, G_t) \}.i = 1' \{ I + \phi G_t + \phi^2 G_t^2 + \ldots \}.i = 1' \left\{ \sum_{k=0}^{\infty} \phi^k G_t^k \right\}.i$$

3. are a natural decomposition of total liquidity variance

$$\text{Var}_{t-1}(L_t) \equiv \text{vec} \left(\{ NIRF_i(\phi, G_t, \sigma_i) \}_{i=1}^n \right)' \text{vec} \left(\{ NIRF_i(\phi, G_t, \sigma_i) \}_{i=1}^n \right)$$
The network impulse-response of total liquidity, L_t, to a one standard deviation shock to bank i is

$$NIRF_i (\phi, G_t, \sigma_i) \equiv \frac{\partial L_t}{\partial \nu_{i,t}} \sigma_i = 1' \{ M (\phi, G_t) \} .i \sigma_i$$

NIRFs: 1 are pinned down by the outdegree centrality and

$$\text{Risk Key Player} \equiv \arg\max_i NIRF_i (\phi, G_t, \sigma_i)$$

2 account for all direct and indirect links among banks since

$$1' \{ M (\phi, G_t) \} .i = 1' \{ I + \phi G_t + \phi^2 G_t^2 + \ldots \} .i = 1' \left\{ \sum_{k=0}^{\infty} \phi^k G_t^k \right\} .i$$

3 are a natural decomposition of total liquidity variance

$$\text{Var}_{t-1} (L_t) \equiv \text{vec} \left(\{ NIRF_i (\phi, G_t, \sigma_i) \}^n_{i=1} \right)' \text{vec} \left(\{ NIRF_i (\phi, G_t, \sigma_i) \}^n_{i=1} \right).$$
Network Description

Network Banks: all CHAPS members in 2006-2010

- Bank of Scotland
- Barclays
- Citibank
- Clydesdale
- Co-operative Bank
- Deutsche Bank
- HSBC
- Lloyds TSB
- NatWest/RBS
- Santander
- Standard Chartered

Note: non CHAPS members have to channel their payments through these banks.

Network Proxy:

proxy the intensity of network links using the interbank borrowing relations

\[g_{i,j,t} = \text{the fraction of bank } i \text{'s loans borrowed from bank } j \]

Note: weights computed as monthly averages in previous month.
Network Description

Network Banks: all CHAPS members in 2006-2010

- Bank of Scotland
- Barclays
- Citibank
- Clydesdale
- Co-operative Bank
- Deutsche Bank
- HSBC
- Lloyds TSB
- NatWest/RBS
- Santander
- Standard Chartered

Note: non CHAPS members have to channel their payments through these banks.

Network Proxy:
- proxy the intensity of network links using the interbank borrowing relations

⇒ \(g_{i,j,t} = \) the fraction of bank \(i \)'s loans borrowed from bank \(j \)

Note: weights computed as monthly averages in previous month.
Network Description

Network Banks: all CHAPS members in 2006-2010

- Bank of Scotland
- Barclays
- Citibank
- Clydesdale
- Co-operative Bank
- Deutsche Bank
- HSBC
- Lloyds TSB
- NatWest/RBS
- Santander
- Standard Chartered

Note: non CHAPS members have to channel their payments through these banks.

Network Proxy:

- proxy the intensity of network links using the interbank borrowing relations

\[g_{i,j,t} = \text{the fraction of bank } i \text{’s loans borrowed from bank } j \]

Note: weights computed as monthly averages in previous month.
Network Description

Network Banks: all CHAPS members in 2006-2010

- Bank of Scotland
- Barclays
- Citibank
- Clydesdale
- Co-operative Bank
- Deutsche Bank
- HSBC
- Lloyds TSB
- NatWest/RBS
- Santander
- Standard Chartered

Note: non CHAPS members have to channel their payments through these banks.

Network Proxy:

- proxy the intensity of network links using the interbank borrowing relations

\[g_{i,j,t} = \text{the fraction of bank } i\text{'s loans borrowed from bank } j \]

Note: weights computed as monthly averages in previous month.
Network Description

Network Banks: all CHAPS members in 2006-2010

- Bank of Scotland
- Barclays
- Citibank
- Clydesdale
- Co-operative Bank
- Deutsche Bank
- HSBC
- Lloyds TSB
- NatWest/RBS
- Santander
- Standard Chartered

Note: non CHAPS members have to channel their payments through these banks.

Network Proxy:

proxy the intensity of network links using the interbank borrowing relations

⇒ $g_{i,j,t} = \text{the fraction of bank } i\text{'s loans borrowed from bank } j$

Note: weights computed as monthly averages in previous month.
Other Data Description

Sample: from Feb 2006 to Sept 2010, daily data.
Dependent Variable: liquidity available at the beginning of the day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)
- LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available; Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment Time; time trend.

Banks Characteristics: (lagged)
- Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time; Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative Change in Retail Deposit to Total Asset Ratio; Total Lending and Borrowing in Interbank Market; Stock Return; CDS.
Other Data Description

Sample: from Feb 2006 to Sept 2010, daily data.

Dependent Variable: liquidity available at the beginning of the day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)
- LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available; Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment Time; time trend.

Banks Characteristics: (lagged)
- Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time; Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative Change in Retail Deposit to Total Asset Ratio; Total Lending and Borrowing in Interbank Market; Stock Return; CDS.
Sample: from Feb 2006 to Sept 2010, daily data.

Dependent Variable: liquidity available at the beginning of the day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)
- LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available; Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment Time; time trend.

Banks Characteristics: (lagged)
- Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time; Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative Change in Retail Deposit to Total Asset Ratio; Total Lending and Borrowing in Interbank Market; Stock Return; CDS.
Other Data Description

Sample: from Feb 2006 to Sept 2010, daily data.
Dependent Variable: liquidity available at the beginning of the day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)

- LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available; Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment Time; time trend.

Banks Characteristics: (lagged)

- Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time; Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative Change in Retail Deposit to Total Asset Ratio; Total Lending and Borrowing in Interbank Market; Stock Return; CDS.
Other Data Description

Sample: from Feb 2006 to Sept 2010, daily data.

Dependent Variable: liquidity available at the beginning of the day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)

- LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available; Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment Time; time trend.

Banks Characteristics: (lagged)

- Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time; Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative Change in Retail Deposit to Total Asset Ratio; Total Lending and Borrowing in Interbank Market; Stock Return; CDS.
Other Data Description

Sample: from Feb 2006 to Sept 2010, daily data.

Dependent Variable: liquidity available at the beginning of the day (account balance plus posting of collateral)

Macro Controls: (aggregate risk proxies, lagged)
- LIBOR; Interbank Rate; Intraday Volatility of Liquidity Available; Turnover Rate in Payment System; Right Kurtosis of Aggregate Payment Time; time trend.

Banks Characteristics: (lagged)
- Interest Rate (weighted average); Right Kurtosis of Payment (Out) Time; Right Kurtosis of Payment (In) Time; Intraday Volatility of Liquidity Available; Total Intraday Payments; Liquidity Used; (Benos, Garratt and Zimmerman, 2010); Repo liability to Total Asset Ratio; Cumulative Change in Retail Deposit to Total Asset Ratio; Total Lending and Borrowing in Interbank Market; Stock Return; CDS.
Two types of estimation:

1. **Subsample estimations:**
 - (good times) Pre Hedge Fund Crisis/ Northern Rock
 - (fin. crisis) Hedge Fund Crisis – Asset Purchase Program Announcement
 - (Q.E.) Post Asset Purchase Program Announcement

2. Rolling estimations with 6-month window \Rightarrow allow ϕ to change at higher frequency.
Two types of estimation:

1. **Subsample estimations:**
 - (good times) Pre Hedge Fund Crisis/ Northern Rock
 - (fin. crisis) Hedge Fund Crisis – Asset Purchase Program Announcement
 - (Q.E.) Post Asset Purchase Program Announcement

2. **Rolling estimations with 6-month window** ⇒ allow ϕ to change at higher frequency.
SEM Estimation

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Effect: (\phi)</td>
<td>0.640*</td>
<td>0.166*</td>
<td>-0.151*</td>
</tr>
<tr>
<td></td>
<td>(52.44)</td>
<td>(7.06)</td>
<td>(-6.45)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>69.11%</td>
<td>89.71%</td>
<td>85.54%</td>
</tr>
<tr>
<td>(average) Network Multiplier</td>
<td>2.77*</td>
<td>1.12*</td>
<td>0.87*</td>
</tr>
</tbody>
</table>
Period 1: \(NIRQ^e(\phi, \bar{G}, 1) \) – Risk Key Players

Pre Northern Rock/Hedge Fund Crisis

Excess NIRF

+/- 2 s.e. C.I.

Excess network multiplier

+/- 2 s.e. C.I.

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

bank index
Period 1: Net Borrowing

- Bank 1: 1e+11
- Bank 2: -5e+10
- Bank 3: 0e+00
- Bank 4: 5e+10
- Bank 5: 1e+11
- Bank 6: -1e+11
- Bank 7: 5e+10
- Bank 8: 1e+11
- Bank 9: -5e+10
- Bank 10: 0e+00
- Bank 11: 1e+11
Period 1: Network Borrowing/Lending Flows
Period 2: $NIRF^e(\phi, \bar{G}, 1)$ – Risk Key Players

Post Hedge Fund Crisis - Pre Asset Purchase Programme

Note: network risk reduction despite increased borrowing & lending
Period 3: $NIRF^e(\phi, \bar{G}, 1)$ – Risk Key Players

![Diagram showing excess NIRF and network multipliers for various banks post Asset Purchase Programme Announcement.](image-url)
Theoretical Framework
Empirical Analysis
Conclusions

Empirical Specification
Network and Data Description
Estimation Results

\(\hat{\phi} \): SEM Rolling Estimation (6-month window)

\[\hat{\phi} \text{ : SEM Rolling Estimation (6-month window)} \]

\(\hat{\phi} \) vs Time

- 20070201: Subprime Default
- 20070809: Northern Rock/Hedge Fund Crisis
- 20080311: Bear Stearns
- 20080915: Lehman Brothers
- 20090119: Asset Purchase Programme Announced

Network Risk and Key Players
\(\hat{\phi} \) and \(\hat{\psi} \): SEM and SDM Rolling Estimation (6-month window)
1 Theoretical Framework
 - Network Specification
 - Bank Objective Function and Nash Equilibrium
 - Risk, and Level, Key Players

2 Empirical Analysis
 - Empirical Specification
 - Network and Data Description
 - Estimation Results

3 Related Literature

4 Conclusions
Theoretical models on liquidity provision in banking systems: coinsurance, counterparty & liquidity risk, hoarding, free-riding, leverage stacks …

- Allen & Gale (2000); Freixas, Parigi & Rochet (2000); Allen, Carletti & Gale (2008); Bhattacharya & Gale (1987), Moore (2011)

Empirical work

Liquidity provision in payment systems

- Furfine (2000): Fed fund rate is related to payment flows
- Benos, Garratt, & Zimmerman (2010): banks make payments at a slower pace after the Lehman failure
- Ball, Dendee, Manning & Wetherilt (2011): intraday liquidity

Overnight loan networks in recent financial crises

- Afonso, Kovner & Schoar (2010): counter-party risk plays a role in the interbank lending market during the 2008 crisis.
- Wetherilt, Zimmerman, & Sormaki (2010): document the network characteristics during the recent crisis
Outline

1. Theoretical Framework
 - Network Specification
 - Bank Objective Function and Nash Equilibrium
 - Risk, and Level, Key Players

2. Empirical Analysis
 - Empirical Specification
 - Network and Data Description
 - Estimation Results

3. Related Literature

4. Conclusions

Appendix
Conclusions

We provide:

- an implementable approach to assess interbank network risk:
 1. network shocks multiplier
 2. risk, and level, key players identification
 3. network impulse-response functions

Empirical Findings:

1. First estimation of network risk multiplier ⇒ a significant shock propagation mechanism for liquidity
2. The network multiplier and risk:
 - vary significantly over time, and can be very large.
 - implies complementarity (and high risk) before the crisis.
 - it’s basically zero post Bearn Stearns ⇒ rational reaction.
 - indicates free riding on the liquidity provided by the Quantitative Easing.
3. most of the systemic risk is generated by a small subset of key players (and not necessarily the obvious ones).
Conclusions

We provide:

- an implementable approach to assess interbank network risk:
 1. network shocks multiplier
 2. risk, and level, key players identification
 3. network impulse-response functions

Empirical Findings:

1. First estimation of network risk multiplier ⇒ a significant shock propagation mechanism for liquidity
2. The network multiplier and risk:
 - vary significantly over time, and can be very large.
 - implies complementarity (and high risk) before the crisis.
 - it’s basically zero post Bearn Stearns ⇒ rational reaction.
 - indicates free riding on the liquidity provided by the Quantitative Easing.
3. most of the systemic risk is generated by a small subset of key players (and not necessarily the obvious ones).
Conclusions

We provide:

- an implementable approach to assess interbank network risk:
 1. network shocks multiplier
 2. risk, and level, key players identification
 3. network impulse-response functions

Empirical Findings:

1. First estimation of network risk multiplier ⇒ a significant shock propagation mechanism for liquidity
2. The network multiplier and risk:
 - vary significantly over time, and can be very large.
 - implies complementarity (and high risk) before the crisis.
 - it’s basically zero post Bearn Stearns ⇒ rational reaction.
 - indicates free riding on the liquidity provided by the Quantitative Easing.
3. most of the systemic risk is generated by a small subset of key players (and not necessarily the obvious ones).
Conclusions

We provide:

- an implementable approach to assess interbank network risk:
 1. network shocks multiplier
 2. risk, and level, key players identification
 3. network impulse-response functions

Empirical Findings:

1. First estimation of network risk multiplier \(\Rightarrow\) a significant shock propagation mechanism for liquidity
2. The network multiplier and risk:
 - vary significantly over time, and can be very large.
 - implies complementarity (and high risk) before the crisis.
 - it’s basically zero post Bearn Stearns \(\Rightarrow\) rational reaction.
 - indicates free riding on the liquidity provided by the Quantitative Easing.
3. most of the systemic risk is generated by a small subset of key players (and not necessarily the obvious ones).
Conclusions

We provide:

- an implementable approach to assess interbank network risk:
 - network shocks multiplier
 - risk, and level, key players identification
 - network impulse-response functions

Empirical Findings:

1. First estimation of network risk multiplier ⇒ a significant shock propagation mechanism for liquidity

2. The network multiplier and risk:
 - vary significantly over time, and can be very large.
 - implies complementarity (and high risk) before the crisis.
 - it’s basically zero post Bearn Stearns ⇒ rational reaction.
 - indicates free riding on the liquidity provided by the Quantitative Easing.

3. most of the systemic risk is generated by a small subset of key players (and not necessarily the obvious ones).
Appendix

5 Additional Data Info
- Second Largest Eigenvalue of G_t
- Average Clustering Coefficient
- Other Variables

6 Additional Estimation Result
- Full SEM Results

7 Network Evolution
- Net Borrowing
- Network Borrowing/Lending Flows
Outline

5 Additional Data Info
- Second Largest Eigenvalue of G_t
- Average Clustering Coefficient
- Other Variables

6 Additional Estimation Result
- Full SEM Results

7 Network Evolution
- Net Borrowing
- Network Borrowing/Lending Flows

Appendix
The Second Largest Eigenvalue of G_t

The graph shows the second largest eigenvalue of the weight matrix over time, with significant spikes occurring during certain events:
- 20070201: Subprime Default
- 20070809: Northern Rock/Hedge Fund Crisis
- 20080311: Bear Stearns
- 20080914: Lehman Brothers
- 20090919: Asset Purchase Programme Announced

The events are marked on the time axis, with the corresponding eigenvalue values plotted over time.
Cohesiveness

Q: How cohesive is this network?

A: Average Clustering Coefficient (Watts and Strogatz, 1998)

\[
ACC = \frac{1}{n} \sum_{i=1}^{n} CL_i(G),
\]

\[
CL_i(G) = \frac{\#\{jk \in G \mid k \neq j, j \in n_i(G), k \in n_i(G)\}}{\#\{jk \mid k \neq j, j \in n_i(G), k \in n_i(G)\}}
\]

where \(n\) is the number of members in the network and \(n_i(G)\) is the set of players between whom and player \(i\) there is an edge.

Numerator: # of pairs of banks linked to \(i\) that are also linked to each other

Denominator: # of pairs of banks linked to \(i\)
Q: How cohesive is this network?

A: Average Clustering Coefficient (Watts and Strogatz, 1998)

\[
ACC = \frac{1}{n} \sum_{i=1}^{n} CL_i(G),
\]

\[
CL_i(G) = \frac{\#\{jk \in G \mid k \neq j, j \in n_i(G), k \in n_i(G)\}}{\#\{jk \mid k \neq j, j \in n_i(G), k \in n_i(G)\}}
\]

where \(n \) is the number of members in the network and \(n_i(G) \) is the set of players between whom and player \(i \) there is an edge.

Numerator: \# of pairs of banks linked to \(i \) that are also linked to each other

Denominator: \# of pairs of banks linked to \(i \)
Average Clustering Coefficient of the Network

The graph shows the average clustering coefficient of the network over time, with key events marked along the x-axis:
- 20070201: Subprime Default
- 20070809: Northern Rock/Hedge Fund Crisis
- 20080311: Bear Stearns
- 20080914: Lehman Brothers
- 20090919: Asset Purchase Programme Announced

The y-axis represents the clustering coefficient, ranging from 0.55 to 0.95.
Aggregate Liquidity Available at the Beginning of a Day

- 20070201: Subprime Default
- 20070809: Northern Rock/Hedge Fund Crisis
- 20080311: Bear Stearns
- 20080914: Lehman Brothers
- 20090919: Asset Purchase Programme Announced

Time (GBP):
- 060525
- 061016
- 070308
- 070801
- 071220
- 080516
- 081007
- 090227
- 090723
- 091211
- 100510
- 100929

Network Risk and Key Players
Interest Rate in Interbank Market

- 20070201: Subprime Default
- 20070809: Northern Rock/Hedge Fund Crisis
- 20080311: Bear Stearns
- 20080914: Lehman Brothers
- 20090919: Asset Purchase Programme Announced

Graph showing changes in interest rate over time with key events marked on the timeline.
Cross-Sectional Dispersion of Interbank Rate

- 20070201: Subprime Default
- 20070809: Bear Stearns
- 20080311: Northern Rock/Hedge Fund Crisis
- 20080814: Lehman Brothers
- 20090919: Asset Purchase Programme Announced
Intraday Volatility of Aggregate Liquidity Available

- 20070201: Subprime Default
- 20070809: Northern Rock/Hedge Fund Crisis
- 20080311: Bear Stearns
- 20080914: Lehman Brothers
- 20090919: Asset Purchase Programme Announced
Right Kurtosis of Aggregate Payment Time

20070201: Subprime Default
20070809: Northern Rock/Hedge Fund Crisis
20080311: Bear Stearns
20080914: Lehman Brothers
20090919: Asset Purchase Programme Announced
Outline

5 Additional Data Info
 - Second Largest Eigenvalue of G_t
 - Average Clustering Coefficient
 - Other Variables

6 Additional Estimation Result
 - Full SEM Results

7 Network Evolution
 - Net Borrowing
 - Network Borrowing/Lending Flows

▶ Appendix
SEM Estimation

R²

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.11%</td>
<td>89.71%</td>
<td>85.54%</td>
<td></td>
</tr>
</tbody>
</table>

Network Effect: φ

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6400*</td>
<td>0.1660*</td>
<td>−0.1510*</td>
<td></td>
</tr>
<tr>
<td>(52.44)</td>
<td>(7.06)</td>
<td>(−6.45)</td>
<td></td>
</tr>
</tbody>
</table>

Macro Controls

<table>
<thead>
<tr>
<th></th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Liquidity (log)</td>
<td>−0.0020</td>
<td>0.3324*</td>
<td>0.5974*</td>
</tr>
<tr>
<td></td>
<td>(−0.04)</td>
<td>(4.59)</td>
<td>(14.73)</td>
</tr>
<tr>
<td>Right Kurtosis of Payments</td>
<td>−0.1654*</td>
<td>0.0265</td>
<td>0.0031</td>
</tr>
<tr>
<td></td>
<td>(−2.39)</td>
<td>(1.12)</td>
<td>(1.01)</td>
</tr>
<tr>
<td>Volatility of Liquidity (log)</td>
<td>0.1750</td>
<td>0.1935*</td>
<td>0.0075</td>
</tr>
<tr>
<td></td>
<td>(1.37)</td>
<td>(7.15)</td>
<td>(0.52)</td>
</tr>
<tr>
<td>Turnover Rate</td>
<td>0.0097</td>
<td>0.0055*</td>
<td>0.0049*</td>
</tr>
<tr>
<td></td>
<td>(1.51)</td>
<td>(2.87)</td>
<td>(2.07)</td>
</tr>
<tr>
<td>LIBOR</td>
<td>0.6456*</td>
<td>0.3216*</td>
<td>−0.1633</td>
</tr>
<tr>
<td></td>
<td>(2.16)</td>
<td>(6.48)</td>
<td>(−1.12)</td>
</tr>
<tr>
<td>Interbank Rate Premium</td>
<td>1.9305*</td>
<td>−0.0505</td>
<td>0.9514*</td>
</tr>
<tr>
<td></td>
<td>(2.75)</td>
<td>(−0.61)</td>
<td>(2.86)</td>
</tr>
<tr>
<td>Constant</td>
<td>16.0761*</td>
<td>10.7165*</td>
<td>11.7844*</td>
</tr>
<tr>
<td></td>
<td>(5.14)</td>
<td>(5.66)</td>
<td>(9.70)</td>
</tr>
</tbody>
</table>
Bank Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Coefficient 1</th>
<th>Coefficient 2</th>
<th>Coefficient 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interbank Rate</td>
<td>-0.5096</td>
<td>-0.2977*</td>
<td>0.1414</td>
</tr>
<tr>
<td></td>
<td>(-1.72)</td>
<td>(-6.02)</td>
<td>(1.0428)</td>
</tr>
<tr>
<td>Intraday Payment Level (log)</td>
<td>-0.1558*</td>
<td>-0.1595*</td>
<td>0.0478*</td>
</tr>
<tr>
<td></td>
<td>(-5.73)</td>
<td>(-8.87)</td>
<td>(2.51)</td>
</tr>
<tr>
<td>Right Kurtosis of Payment In</td>
<td>0.0359</td>
<td>-0.0045</td>
<td>-0.0395*</td>
</tr>
<tr>
<td></td>
<td>(1.90)</td>
<td>(-0.26)</td>
<td>(-3.39)</td>
</tr>
<tr>
<td>Right Kurtosis of Payment Out</td>
<td>0.1416*</td>
<td>0.1742*</td>
<td>0.0426*</td>
</tr>
<tr>
<td></td>
<td>(8.17)</td>
<td>(15.89)</td>
<td>(4.16)</td>
</tr>
<tr>
<td>Vol of Liquidity Available (log)</td>
<td>0.0558*</td>
<td>0.0524*</td>
<td>0.0417*</td>
</tr>
<tr>
<td></td>
<td>(39.72)</td>
<td>(50.23)</td>
<td>(36.73)</td>
</tr>
<tr>
<td>Liquidity Used (log)</td>
<td>0.0303*</td>
<td>-0.0023</td>
<td>0.0052</td>
</tr>
<tr>
<td></td>
<td>(3.00)</td>
<td>(-0.34)</td>
<td>(0.68)</td>
</tr>
<tr>
<td>Top 4 Bank in Payment Activity</td>
<td>1.3374*</td>
<td>1.6815*</td>
<td>2.3738*</td>
</tr>
<tr>
<td></td>
<td>(26.97)</td>
<td>(46.31)</td>
<td>(57.18)</td>
</tr>
<tr>
<td>Repo Liability / Assets</td>
<td>-0.7721</td>
<td>0.7401*</td>
<td>0.0575</td>
</tr>
<tr>
<td></td>
<td>(-0.92)</td>
<td>(14.46)</td>
<td>(0.64)</td>
</tr>
<tr>
<td>Change in Deposit / Assets</td>
<td>0.5050</td>
<td>-1.3275*</td>
<td>-1.2503*</td>
</tr>
<tr>
<td></td>
<td>(0.68)</td>
<td>(-6.65)</td>
<td>(-3.70)</td>
</tr>
<tr>
<td>Total Lending and Borrowing (log)</td>
<td>0.1209*</td>
<td>0.0249</td>
<td>-0.3231*</td>
</tr>
<tr>
<td></td>
<td>(3.56)</td>
<td>(0.99)</td>
<td>(-23.70)</td>
</tr>
<tr>
<td>CDS (log)</td>
<td>-0.0652</td>
<td>-0.0274*</td>
<td>0.0514*</td>
</tr>
<tr>
<td></td>
<td>(-1.49)</td>
<td>(-3.17)</td>
<td>(4.55)</td>
</tr>
<tr>
<td>CDS Missing Dummy</td>
<td>-2.1893*</td>
<td>-2.2618*</td>
<td>-0.8502*</td>
</tr>
<tr>
<td></td>
<td>(-11.38)</td>
<td>(-32.04)</td>
<td>(-8.37)</td>
</tr>
</tbody>
</table>
Outline

5 Additional Data Info
 • Second Largest Eigenvalue of G_t
 • Average Clustering Coefficient
 • Other Variables

6 Additional Estimation Result
 • Full SEM Results

7 Network Evolution
 • Net Borrowing
 • Network Borrowing/Lending Flows

Appendix
Period 1: Net Borrowing

Net Borrowing

Bank Index

Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11

Net Borrowing

-1e+11 -5e+10 0e+00 5e+10 1e+11

1 2 3 4 5 6 7 8 9 10 11

Network Risk and Key Players
Period 2: Net Borrowing

Net Borrowing

Bank Index

Net Borrowing

Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11

Bank Index
Period 3: Net Borrowing

The diagram illustrates the net borrowing for different banks across period 3. Each bank is represented by a vertical line on the graph, indicating its net borrowing amount. The x-axis represents the bank index, from Bank 1 to Bank 11, while the y-axis shows the net borrowing values ranging from -1×10^{11} to 1×10^{11}.
Period 1: Network Borrowing/Lending Flows
Period 2: Network Borrowing/Lending Flows

[Diagram showing network connections between different banks including Bank 9, Bank 10, Bank 11, Bank 1, Bank 2, Bank 3, Bank 4, Bank 5, Bank 6, and Bank 7.]
Period 3: Network Borrowing/Lending Flows