First steps with JAS

The aim of this tutorial is to show how to build a very simple model, in which some agents extract a random number and communicate it to the world. We call this example Random.

The starting point of each model is the specification of a class that extends “jas.engine.SimModel”. In this way the engine of the simulation can send messages to the model. For to do this, let us create a file called “RandomModel.java” in which we will write the following code:
import jas.engine.*; // Contains the control classes of the simulation
import jas.events.*; // Contains the event hierarchy
public class RandomModel extends SimModel {
public int numberOfAgents; //Number of agents

public ArrayList agentList; //List of the agents
public void setParameters() {

numberOfAgents = 10;

Sim.openProbe(this, “Parameters model”);

}

public void buildModel() {

agentList = new ArrayList();

for (int i = 0; i < numberOfBugs; i++)

agentList.add(new Agent(i));

eventList.scheduleCollection

(0, 1, agentList, getObjectClass(“Agent”), “step”);

}

}

The model class must specify the routine “setParameters” in which we can set the parameters of the simulation. Now it is possible to build a graphic interface in which we can modify the parameters of the simulation, before to definitively build the model.
In our example the method “setParameters” sets the variable “numberOfAgents” and opens a graphic probe on the model, in order to permit the interaction with the user. In fact the instruction “openProbe” allows building a graphic object that explores variable into the object gave as parameter.
The second compulsory method is “buildModel” that has to allocate memory for the objects (agents, spatial structures, graphics, etc.) and to create a time table event with an exact temporal sequence.

In our example the method builds an agent list (“agentList”), builds a number of agents specified by the parameters and inserts them inside the list. In this way we can send messages to the entire collection instead of to communicate with each element separately. This method also selects an event, executed at the time 0 and iterated each interval (with frequency equal to 1 tic). This event calls the method “step” of each agent included in the list. The instruction “getObjectClass” specifies that the objects included in the list belongs (and must belong) to the class “Agent”. The scheduling of the events takes place through the variable “eventList” available automatically in each object that extends “SimModel”.
At this point we have to define the class “Agent”. Let us create the file “Agent.java” as follows:
public class Agent {

private int id;

public Agent(int agentId) {

id = agentId;

}
public void step() {

double randomNumber = Sim.getRnd().getNormal(10.0, 123.0);

System.out.println(‘‘The Agent number ’’

+ id + ‘‘ has extracted the number ’’ + randomNumber);
}

}
The agent is created with a number that clearly identifies her. The only action that she is able to do is defined in the method “step”. The agent uses the instruction “getRnd().getNormal” in order to obtain a random number normally distributed. This number, saved in the temporary variable “randomNumber”, is used in the next instruction in order to print a text about the information of the agent and the random number.
