Professor Sheri Markose 
Artificial Stock Market Models:  INTRODUCTION
(Rationale for ASM : Pioneered by Brian Arthur et al at Santa Fe Institute (1977); Shu- Heng Chen(2001 , JEDC); Hommes et. al. (2007, JEDC)
Traditional rational expectations models for stock market behaviour could not explain the boom bust stylized facts of stock market prices.

Indeed, the traditional RE model results in the no trade result or that speculative trading does not exist as all agents must have HOMOGENEOUS RATIONAL EXPECTATIONS.
That is, rational agents who form expectations of the stock price given the same  information set as in the  Fama type assertion on efficient market hypothesis (EMH) states: prices, P, that contain all (publicly) available information, H, follow a martingale such that price changes are random and not serially correlated.  If the theory of emergence or algorithmic undecidability of strong reflexive encodings is not explicitly considered, it is easy to become a victim of the  fallacy of composition.  It can be held that the global outcome of non-anticipative prices is the consequence of rational agents who believe this to be the case.  That is, if i indexes all N agents, the following states that all agents have homogenous beliefs that the asset price is a random walk 



(i Ei (Pt+1 | Ht) = Pt  ,
              i= 1,2,……., N.  
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 In the case when assets are traded for purely speculative reasons, viz. for pecuniary gains based on price expectations, homogenous price expectations results in the non-existence of speculative trading.  We have the paradox that with the cessation of trade, the price at t+1, Pt+1 , never gets determined.


If one is to take the Samuelson (1965)
  view that ‘proper’ anticipation of prices implies taking conditional expectations,

E(Pt+1| Ht),

it is clear that this is without unique procedural content. In Arthur et. al. (1997) they make a case for heterogeneous multi-agent models where each agent uses  genetic algorithms to arrive at future price predictions. 


Why Artificial Stock Markets With Adaptive Learning Agents?   
(i) Price determination  is reflexive and arises from how stock market prices are based on agents expectations of the price .
[image: image2.wmf]
Self-reflexivity :
Assume the market price determination function g(.) maps into the price next period

                                      g(.) (  Pt+1

                                 Pt+1   =      g(
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That is, the price at t+1 is based on strategies of agents, it (to buy or sell) based on their respective beliefs,  
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 on the price at t+1.
The implication of this self-reflexive structure is that there is no         

there is no unique way in which agents can form expectations of the price.
Most ASMs have agents who are heterogeneous in how they form price forecasts. 

In Arthur et. al. (1997) they make a case for heterogeneous multi-agent models where each agent uses  genetic algorithms to arrive at future price predictions. 

“Agents , in facing the problem of choosing appropriate predictive models,  face the same problem that statisticians face when choosing appropriate predictive models given a specific data set, but no objective means by which to choose a functional form… .  The expectational models investors choose affect the price sequence, so that our statisticians very choices of model affect their data and so their choices of model”  (ibid.  p. 305, italics added).   

“In asset markets, agents’ forecasts create the world that agents are trying to forecast.  Thus, asset markets have a reflexive nature in that prices are generated by traders’ expectations, but these expectations are formed on the basis of anticipation of others’ expectations.  This reflexity, or self-referential character of expectations, precludes expectations being formed by deductive means , so that perfect rationality ceases to be well defined” (Arthur et. al. 1997, Santa Fe Institute Working Paper    

We will proceed to show that instead of referring to the above self-reflexive problem as one that “ceases to be well defined ” – the problem is algorithmically unsolvable. 

The message here is that it is not tenable to justify EMH on truisms such as rational agents do not make systematic errors.    
(ii) Heterogeneous Agent Models   (HAMS)

Heterogeneous agents: ● Can arise exogenously such as from asymmetry of information; Different risk aversion; Different endowment

●The challenge is to show how identical agents due to the logic of the decision problem will be forced to become heterogeneous in their beliefs.

HAMS include popular archetypes such as trend followers (who accentuate the direction of historical prices) and fundamentalists (who effectively implement the contrarian strategy by selling when the market price goes above a threshold and buying when it goes below)

Figure 1 Stylized depiction of  Mean Reversion and Trend Regimes:
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If  EPt+1    >  V *     :  Sell if you are a fundamentalist – the stock is overvalued

If E Pt+1      >  V*     :   Buy if you’re a trend follower.  
(iii) The fundamental proof of the pudding is “Can ASM’s produce stylized facts on stock market prices”
(a) Boom bust stock market behaviour

(b) Fat tailed non-gaussian returns

(c) Volatility Clustering

Historical evidence indicates  large fluctuations of stock prices compared to indicators of fundamental value. For example, the price

to earnings ratio of the S\&P500 was around 5 at the beginning of the 20s, but more than 25 about nine years later to fall back to about 5 again by 1933. In 1995 the price/earnings ratio of the

S\&P500 was close to 20, went up to more than 40  at the beginning of 2000 and then quickly declined again to about 20 by the end of 2003.  Why do prices fluctuate so much compared to economic

fundamentals?

· Some slides from Markus K. Brunnermeier
Princeton University
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Internet bubble?     - 1990’s

NASDAQ

Combined Composite Index

NEMAX 

All Share Index (German Neuer Markt)

38 day average

Chart (Jan. 98 - Dec. 00)

38 day average

Chart (Jan. 98 - Dec. 00) in Euro

Loss of ca. 

60 %

from high of $ 5,132

Loss of ca. 

85 %

85 %

from high of Euro 8,583



Why do bubbles persist?



Do professional traders ride the bubble or 

attack the bubble (go short)?



What happened in March 2000? 
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Do (rational) professional ride the bubble?

South Sea Bubble (1710 - 1720)



Isaac Newton



04/20/1720 sold shares at £7,000 profiting £3,500



re-entered the market later - ended up losing £20,000



“I can calculate the motions of the heavenly bodies, but 

not the madness of people”

Internet Bubble (1992 - 2000)



Druckenmiller of Soros’ Quantum Fund didn’t think 

that the party would end so quickly.



“We thought it was the eighth inning, and it was the ninth.” 



Julian Robertson of Tiger Fund refused to invest in 

internet stocks
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

“The moral of this story is that irrational market 

can kill you … 



Julian said ‘This is irrational and I won’t play’ and 

they carried him out feet first.



Druckenmiller said ‘This is irrational and I will play’ 

and they carried him out feet first.” 

Quote of a financial analyst, New York Times

April, 29  2000

Pros’ dilemma
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Timing Game - Synchronization

(When) will behavioral traders be 

overwhelmed by rational arbitrageurs?

Collective selling pressure of arbitrageurs 

more than suffices to burst the bubble.

Rational arbitrageurs understand that an 

eventual collapse is inevitable. 

But when?

Delicate, difficult, dangerous TIMING GAME 

!


1. DETAILS
SELF-REFLEXIVE SYSTEMS WITH CONTRARIAN STRUCTURES

(Mathematics of Why RE is not Computable  Spear(Econometrica,1989)

(Minority Game Structure 

1.1 Inductive Rationality and Heterogeneous Beliefs : Minority Game 


 The adherence in traditional economics to a misconceived notion of  rationality that relies on a deductive methodology to solve problems of a self-referential kind was further challenged by Arthur (1991,1994).  Using a vignette on the El Farol bar game where punters seek to go to the bar when it is not crowded, Arthur (1994) gave a clever rebuttal of why an asset market equilibrium, with  homogeneity in forecast rules when all agents adopt the same meta model for predicting the state of the market, cannot exist.  Payoffs to a stock market investor increase to the extent that he is in a minority by following a contrarian strategy of selling when the majority is buying and buying when most are selling.  Alternatively any payoff structure that has decreasing returns to scale in the number of users – has this contrarian structure.  That is if more of us use a facility such as the road, the speed falls for all of us.  So we want to be there 
This decision problem defies HOMOGENEOUS PREDICTION MODEL:

If all punters have the same meta-model to predict attendance at the bar and suppose they predict that it will be crowded, then they will not attend and hence the outcome will contradict their prediction.  Further, they fail to meet their objective of being in the minority and a theory that propounds the existence of  homogeneous rational expectations for the punters is far from rational as that will result in  systematic losses.            

There has been extensive analysis based on computer simulations of multi-agent models of this game which has increasingly been called the Minority game after Challet and Zhang (1998).  Majority games where conformity with others’ strategies do not pose any problems of indeterminacy, equally, they produce one way markets and are not capable of characterizing  asset market dynamics.  The crux of the computer analysis of Minority games, where the decision problem cannot be solved by deduction and can only self-organize, is that there is a critical degree of heterogeneity in strategies that can enable players to do better than if they simply randomized following the conventions of extant game theory.  The contrarian structure to a payoff function or alternatively the existence of a hostile player who will controvert what the other player does, if the hostile agent knows or can deduce the best response of the other, can be shown to pose the same non-computability issues for the fixed point of the game.  There is now a large body of work associated with complex adaptive systems which has begun to identify self-reference problems with such contrarian structures are being endemic in socio-economic systems, human eco-system problems
, evolutionary biology and immunology.
To pin down the algorithmically unsolvable  nature of a rational expectations price or the absence of an unique objective decision procedure for agents to compute the functional fixed point mapping , I will outline the issues on inductive inference learning first raised in Spear (1989).  

The model is tailored to suit an asset market equilibrium for a single asset that can be bought and sold in standardized units where the total quantity of the asset is Q.  Time is discrete and denoted by t= 0,1,2,… .

There are N agents index by i=1,2,3,…..,N.  Agents can choose to be buyers (Nb)  or sellers (Ns), Nb  +  Ns  ( N.  In a one period ahead forecast horizon for agents, in the absence of any fundamental value determining factors for the asset price, we will consider the minority game studied in Challet and Zhang (1998) and Savit et. al. (1999).  

               The breakthrough in the formalization of the absence of a deductive methodology or the non-existence of a unique effective procedure in the formation of forecasts or expectations came with Spear (1989).  Spear formulated the problem in a recursion function framework and the Second Recursion Theorem and Rice’s Theorem (see, Cutland (1980)) were utilized for the purpose.  We will follow the  approach in Spear (1989) to show why the problem of identifying the market price function will of necessity rely on trial and error forms of inductive inference with no unique decision  procedure.  


A fast growing view here is that the fundamental indeterminacy in the choice of what is the optimal action for a decision problem with a self-refuting structure leads to an endogenous ‘emergence’ of heterogeneity or variety and even novelty in agent characteristics and strategies in the system. This has been discussed at length in Markose (2004, 2005).   However, with the exception of Binmore (1987) and Markose (2004,2005), few game theorists have explicitly utilized the Gödelian construction to show how there is a Nash equilibrium  in which the only logically consistent and strategically rational thing to do is to innovate or surprise. 

The Fixed Point or Second Recursion Theorem states how there exists an index n of a program/set of instructions that computes f(n) and then applies f(n) so that both n and f(n) are instructions for the computation of the same partial recursive function and if the latter is computable at this point the same outcome q is predicted. 

Theorem : Fixed Point or Second Recursion Theorem (Cutland, 1980 p. 200)

 Let f be a total unary computable function then there exists a number n such that such that 

f (n) =  n.                                               (5)


Note, f(n) ( n, but they identify the same function and both sides of equation will yield an identical output.  
3. Formalization of El Farol Game and Learning Rational Expectations of a Asset Market Price Function and  

As discussed in the introduction, the Minority game (see, Challet and Zhang (1998) and Savit et. al. (1999)) has a contrarian payoff structure.  The model is tailored to suit an asset market equilibrium for a single asset that can be bought and sold in standardized units where the total quantity of the asset is Q.  Time is discrete and denoted by t= 0,1,2,… .  There are N agents index by i=1,2,3,…..,N.  Agents can choose to be buyers (Nb)  or sellers (Ns), Nb  +  Ns  ( N.  Agents execute their trades at t, having information up to t, and as their payoffs are related to the price at t+1, Pt+1, their trading strategy is based on one period ahead predictions.  Agents can buy or sell only 1 unit of the asset.  Performance is assessed period by period.  The price function as we will specify will enhance profitability or payoff monotonically with the smallness of the minority and hence reinforces learning in the direction of being contrarian. 

The payoff for those who trade is given by
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Buyers win because they bought below their reservation price in (6.a) and sellers win in (6.b) because they sell above their reservation price.  Above, r is the reservation price which is the same for all agents.  Condition (6.c) stipulates the random walk model when the price fluctuates around r by a white noise error, .     


For computational agents their decision procedures and forecast rules are computable functions.  Each agent’s prediction function of price at t+1 given information on past prices up to time t (viz.  Ht*={ Pt-i }   i= 0, 1,2,…..t ) is defined by fi^ is a mapping from the information set to set of spot prices for the asset,     

 

fi^: Ht* ( {Pt+1}.                                 (7) 

Note, there are three pure strategies to buy, sell or not to trade {b, s, # }.  Agents’ decision procedure in pure strategies is defined as 

it+1 :   ( Ht* ,fi^) (   
[image: image11.wmf])
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 EMBED Equation.3 [image: image12.wmf] 
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The decision rule for speculation is simple: agent i buys at t+1 if predicted price is less than reservation price (8.a) and sells if predicted price is greater than reservation price (8.b).  Agent i does not trade if the agent is a random walk believer, fi# in (8.c), and the expected return is equal to r.  In other words, it is plausible to assume that a speculator will not trade unless he is expects to win.  The spot market prices are determined by a total computable function g which is mapping from agents’ decision rules based on their forecast function to the set of admissible spot prices,

g :  (bit , fit^, 
[image: image14.wmf]i
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, i= 1,…. N) (  {Pt+1 }. 
                 (9)


The spot market price function g is given by
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[image: image16.wmf]
Here,  is a white noise term, ~N(0,1).  The market price function g precisely determines the payoff for the minority speculative market game.  In (10.a) it yields the set of prices {P1} which leads sellers to win given they are in the minority as stated on the RHS of (10.a).  P1 is an increasing function of the size of the majority  implying that larger the buying majority the more profitable it is for j to be a seller.  Likewise, in (10.b), the set {P 0} makes it a win situation for buyers given they are in a minority.    The extreme case of Pt+1 #  = 0 is obtained when no trade occurs and when all agents become random walk believers. 

Assumption 1:  Given an appropriate encoding for the formalism of the above stated Minority game the spot market price function g is assumed to be a number theoretic 

g: N ( N.   By the Second Recursion Theorem stated in equation (5) the market price function g has a fixed point in the sense that there exists computable functions a  such that  g(a) =  a. 

Definition 6 : In a rational expectations equilibrium (REE) there exists some  computable forecast function f ^= a  such that  

g(a) (  a ,


(11) 

then a is a fixed point of the market price function g.  Note, a is the encoding of the algorithm or program that computes the output of the market game when the market price function g that determines the outcome is consistent with  agents’ prediction functions for Pt+1.  In the absence of perfect information on the population distribution of forecast rules, in principle an agent has to find a meta forecast rule f ^= a  that satisfies (11).  That is, the agent has to identify a proper subset of the set of all partial computable functions {  such that only the fixed points of the total computable function g are identified, viz.



{ m | g(m) =  m }.                                  (12)

By Rice’s Theorem (see, Spear, 1989) there is no uniform recursive/ algorithmic procedure to identify the above set of indices in (12) and hence there is no systematic way of forming REs of the market price function g. There is only inductive trial and error learning that begins search in an arbitrary subset of diverse forecast rules.  We will now formalize why a computable homogeneous REE cannot exist in market games that resemble the Minority game.               .    

Definition 7: We say agent i has rational expectations of the spot price if  fi ^ = a and a is the fixed point in (11).

Definition 8: The REE of the Minority market game has a computable fixed point if (11) is computable and

 g(a) =  a = Pt+1 . 

Then, the RHS, a, and the LHS g(a) of (11) must produce the same outcome in terms of {P1}, {P0}, {P#} defined in (10 a,b,c) and hence the appropriate pure strategy for t+1 is predictable at t. 

Definition 9: A homogenous REE (HREE) is one in which, 
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, i= 1,…. N,  there exists a f ^ such that  f^= a. 

Theorem 4:  By the Second Recursion Theorem a total computable market price function g has a fixed point. There is no computable homogeneous RE  equilibrium for the Minority market game in the three pure strategies  buy, sell or no trade {b,s, #}.  There is no uniform algorithmic decision procedure to determine optimal winning strategies in (8) or Pt+1 is not predictable. 

Proof :  We consider two cases . Assume that (11) is computable and for 
[image: image18.wmf]i
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, i= 1,…. N   there exists a f ^ such that  f^= a.   Case 1: For the pure strategies to sell or buy: For a on the R.H.S of (11) assume f^= a ={P0} be the predicted outcome.  This, however, results in the decision rule (8.a) to follow for all agents.  Hence, all agents become buyers which results in g(a) to output {P1} and render all their predictions to be wrong.   As this leads to the RHS and the LHS in (11) to yield contradictory outcomes {P1} and {P0}, we conclude that (11) is not computable in the homogeneous case.

Case 2: For pure strategy not to trade : For a on the R.H.S of (11) let (10.c) hold and {P#) be the predicted outcome which leads to agents’ decision rule  (8.c) to follow for all agents. Thus, when all agents do not trade the LHS of (11) via market price function g  produces the outcome {P0} as the minority outcome.  Thus, a contradiction follows and there is no computable homogenous REE in pure strategies. 


 Thus, the upshot so far is the following : the learning of REE is in general inductive or non-recursive and inductive learning cannot be complete or perfect. Homogeneity of forecast rules or agent beliefs is logically impossible in stock market models where payoffs come from being contrarian vis-à-vis the majority.  Thus, the absence of a unique algorithmic decision procedure for the market price and using heterogeneous adaptive computing models for the price makes it tenable that even agents with the full powers of a Turing machine must agree to disagree with regard to price predictions even given the same information and full formalization of the game.  

Ingredients of an Artificial Stock Market :

I. Investment Strategies

II. Market price determination :  Price adjustment on the basis of simple excess demand functions 

There can be more elaborate price setting arrangements involving market makers etc.

III.  When do agents retrain if using GA’s GPs. 

Typical investment strategy of ASM:

(I) All traders share the same CARA (Constant absolute risk aversion) utility function:

                                                  U(Wi,t) = - exp (-  Wi,t)               (1)
Here,  Wi,t is the the wealth of the trader i at time period t and  is the deree of relative risk aversion.    Wealth consists of cash, Ci,t,  and holdings of  single risky asset at price Pt:

                                        Wi,t =  Ci,t   +  Pt hi,t                                           (2)
 Wealth dynamics is given by :

                                      Wi,t+1 = (1 + r) Ci,t   +   hi,t (Pt+1  +  Dt+1)     (3)   
Dt+1 is the dividends from stock.
The goal of the agent is to maximize one period ahead Expected Utility of Wealth which will include mean and variance of prices :

                           Ei,t  ( U(W​i,t+1)) =  E (- exp  Wi, t+1)| Ii,t) . 
             (4)
  =  - exp - [ (1+r) (Wit – Pt hit )  +  hit Et(Pt+1 + Dt+1)] + hit2p
Take first order conditions and solve for the optimal holdings of stock :

                                     hi,t* = 
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                              (5)    

p is the sample variance of the stock price.  The above is called the Sharpe Ratio.   Agents form expectations/forecasts for next period price using different GP rules.                     

Note:  Agent buys if :
                           bit =   hi,t* – hit-1  > 0

             Agent sells if:

                           oit=   =   hi,t* – hit-1 < 0 .   
II. Price Determination:
The price is determined solely as a function of excess demand with respect to aggregate bids , B, and offers, O, at each t.   Denoting the total number of agents/traders in the market as N, the aggregate bids and offers at t is 


 Bt =  
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 We follow the price adjustment scheme discussed in Chen and Yeh (2001) which is based on excess demand (Bt – Ot)



Pt+1  =  Pt (1 +  (Bt – Ot) ) .        
                      (9)      
Here  can be interpreted as the speed of adjustment parameter.   The form that this takes is identical to that in Chen and Yeh (2001),

    
[image: image22.wmf]ï

î

ï

í

ì

<

-

b

³

-

b

=

-

b

.

O

B

if

))

O

B

(

(

tanh

,

O

B

if

))

O

B

(

tanh(

)

O

B

(

t

t

t

t

2

t

t

t

t

1

t

t

                            (10)
                       

The stock returns, Rt,  is defined as 



Rt =  (ln Pt+1  -  ln Pt) .    


          (11)

In (8), as will be explained later, whether bids or offers are made by traders depend on  the recommendations made by their respective GPs.  The Palmer rationing scheme is then used for the allocation of shares to each agent.   Denoting the ith agent’s holdings of shares at time t  by hit, 



hit =  hit-1  +  
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Here Vt  ( min (Bt , Ot) is the volume of trade in the stock and the expression in the bracket is the case that applies when the agent is going short.

III. Endogenous Retraining : The Red Queen (See paper by Sheri Markose) 
See criticism of ASMs below
The fundamental hypothesis is that agents try and keep up with their peers:
If   Wit    <   
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 EMBED Equation.3  [image: image25.wmf]t

W



 EMBED Equation.3  [image: image26.wmf] - they will retrain .
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 is the average wealth of all the traders.

Pareto law in wealth distribution:  
                P(W)  =  W- 

Proportion of population with W greater than or equal to W.
Observed Power Law has =3/2.
For example in the Minority game with investment behaviour if wealth increases only by adding +1 at each point, wealth distribution is too egalitarian. 
If investment return is proportionate to amount invested and where amount invested is a function of past success, then it was found that wealth distribution follows a Power Law that is less egalitarian. 

Abstract and Excerpts from Markose Red Queen Paper 
In competitive coevolution, the Red Queen principle entails constraints on performance enhancement  of all individuals if each is to maintain status quo in relative fitness measured by an index relating to aggregate performance.  This is encapsulated in Lewis Caroll’s Red Queen who says  “in this place it takes all the running you can do, to keep in the same place”. The substantive focus of this paper is to experimentally generate stock market ecologies reflecting the Red Queen principle for an explanation of the observed highly inegalitarian power law distribution in investor income (measured here as stock holdings) and the emergence of arbitrage free conditions called market efficiency. With speculative investors modelled as using genetic programs (GPs) to evolve successful investment strategies, the analytical statement of our hypothesis on the Red Queen principle can be implemented by constraint enhanced GPs which was seminally developed by Tsang (1993, 1998) Li and Tsang (2000) and Markose et. al. (2001).
1. Introduction


This paper aims to implement the methodology of computationally intelligent multi-agent models to simulate stock markets as complex adaptive systems (CAS).
These markets are likened to complex ecologies involving the interaction of a large number of agents who adaptively respond to their environment and to other agents with the aid of computer programs or algorithms that mimic evolutionary principles. The environment of such agents becomes complex with statistical ‘signatures’ such as power laws.  Associated with this soup of coevolving population of agents, each attempting to enhance its fitness relative to others, is the principle of the Red Queen based on the observation made to Alice by the Red Queen in Lewis Caroll’s  Through the Looking Glass : “in this place it takes all the running you can do, to keep in the same place”.  

The principle of the Red Queen was first identified by an evolutionary biologist van Valen to encapsulate features of competitive coevolution in species.  In  the competition  that governs the fight for scarce resources  or in cases of  direct confrontation with zero sum payoffs such as in parasite- host or predator-prey  situations  what matters is relative rather than absolute performance capabilities of the individuals.  Certain attributes of individuals have to be enhanced relative to the same in  others to  stay ahead of the race.  But others are like-wise involved in performance enhancement triggering off an arms race.  Since only hypothesis or conjectures but not the direct tests of the Red Queen principle can be applied to evolutionary biology, Artificial Life simulations have become the means to understand the system dynamics and  distinctive if not generic features of competitive coevolution.   The  classic work of Ray’s Tierra (1990) and Sim’s creatures (1994) are based on competing coevolving species.   In Hillis ( 1990) parasites were deliberately introduced and it was noted that competition among coevolving species could potentially prevent stagnation in local optima .  The evolution of intelligence itself is hypothesized to arise as a Red Queen type arms race giving rise to Machiavellian behaviour in social interactions, Robson (2002).   Markose (2004) gives a fuller discussion of the relevance of the Red Queen principle for Economics.  

In competitive coevolution, the Red Queen principle, therefore, entails constraints on performance enhancement of all individuals if each is to maintain status quo in relative fitness measured by an index relating to aggregate performance. The substantive focus of this paper is to experimentally generate stock market ecologies reflecting the Red Queen principle for a long overdue explanation of the observed highly inegalitarian power law distribution in investor income (measured here as stock holdings) and the emergence of arbitrage free conditions called market efficiency. With speculative investors modelled as using genetic programs (GPs) to evolve successful investment strategies, the analytical statement of our hypothesis of the Red Queen is as follows: each agent’s strategy must ‘keep up’ with the average performance of all other strategies in terms of returns.  This can be implemented by constraint enhanced GPs which was seminally developed by Tsang (1993, 1998) Li and Tsang (2000) and Markose et. al. (2001). 
   

In the Santa Fe artificial stock market model of  Arthur et. al (1997) it was found that when the forecast performance of agents as genetic programs was altered by different rates of retraining, the stock price dynamics varied correspondingly. When the genetic programs were given a slow rate of  retraining, the market converged to homogenous rational expectations (HRE) while when retraining rate was speeded up, the more volatile dynamics of real stock markets was observed.  However, from our perspective on the Red Queen principle, performance enhancement should not be ad hoc and exogenously imposed by the experimenter, but should be an endogenous constraint.  

Chen and Yeh (2001) are exceptional in having proposed an endogenous scheme for when and by how much investors equipped with genetic programs retrain in an artificial stock market environment.   They (ibid pp. 377-379) discuss the process of enhancement of individual investment performance in terms of   peer pressure and self-realization. They prescribe an endogenous way in which agents look for ‘better’ investment rules and call this procedure ‘Visiting the Business School .  Chen and Yeh (2001, p.379) make an important point which  can be summarized  as follows : in so far as each agents’ investment performance differs from one another relative to some (endogenously given ) benchmark, agents now coevolve  governed by a different fitness or objective function. However, the following problem may be cited with the Chen and Yeh measure based on the peer pressure criterion.  It depends on a notion of rank (Chen and Yeh, 2001, p. 377) which presupposes knowledge by an agent of  all other agents’ investor performance. On the basis of decentralized information, this is not viable. Hence, we argue that relative investment performance had best be evaluated by aggregate market index returns – the straight forward idea of ‘beating the market’.   Further, we move away from the Sante Fe type use of  the Sharpe ratio investment decision rule used in Chen and Yeh (2001) and elsewhere as  it not optimal when returns are not Guassian (which is very likely the case of Red Queen returns) with constant volatility (which is very unlikely the case of Red Queen returns).

IV.  Test the Stock Prices and Wealth of Traders from the ASM for stylized facts

Criticism of ASMs:

(i) ASMs with GP agents with adaptive learning; retraining is set exogenously by experimenters.

When the number of time steps between retraining is large – the market became stable; when the time steps between retraining was diminished, the market resembled stylized facts with boom and bust.
(ii) Switching between trend followers and fundamentalist/contrarians all manner of ad hoc specifications given
(iii) No real consideration of market micro structure

Price determination crude 

Neither features of market maker/specialist system nor the rules of the limit order book are used.  

We will see that real time simulators with full reproduction of market microstructure rules and real time order book rebuilding is essential to understand stylized facts of high frequency data and also trading strategies in the real world are fully attenuated to the specific market microstructure of E-markets.
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� In Arthur et. al  (1997) the homogenous rational expectations equilibrium (HREE) price at t+1 differs from the discounted current price only by a constant term which is the risk adjusted dividend yield.  


� The well known Samuelsonian tenet  states  ‘properly’ anticipated prices fluctuate randomly.  Here by ‘proper’ anticipation is meant that conditional expectations, represented as E(Pt+1| Ht ) are taken.  However, as conditional expectations operators by the Tower/iterated property satisfies the martingale condition, random fluctuations  in properly anticipated prices is satisfied by tautology.  Thus, by the Tower property E(E(Pt+1 | Ht))| Ht-1) = E(Pt+1 | Ht-1) implying that E(Pt+1 | Ht) - E(Pt+1 | Ht-1) = t, where t is white noise. 


 


� All facilities that lead to congestion and diminishing marginal returns in the number of users, such as traffic congestion or fishing in a non-excludable waters, give rise to the problem that users who adopt the same reasoning and/or are privy to the same information as the majority will systematically lose the game and the collective outcomes make everybody worse off.  See, Conquest (1993) for an analysis of the former and Allen and Glade (1986) for the latter.  Batten and Boschetti (2005) have recently noted that what the simulations results show is that the major consequence of the self-defeating structure in the decision problems of agents is that it triggers activity by innovators, rule breakers or contrarians who break away from the norm.  This is found to be essential for the system to achieve sustainable outcomes.


� To derive above: first note Ciit  = Wit – Pt hit .  Substitute this into (3) and then take the mean and variance of (3) and then substitute into (4).   


� Here tanh is the hyperbolic tangent function :  tanh(x) � EMBED Equation.3  ���.


� In Markose et. al. (2001) GPs were trained to detect arbitrage opportunities in a program called EDDIE-ARB geared toward conducting arbitrage operations in the index options and futures markets.   Historical data indicated that arbitrage opportunities exist, but they are few and far between.  From a large domain of search, fewer than 3% of these were found to be profitable in excess of transactions costs.  While the GPs could be successfully trained to find arbitrage opportunities, many of these were being missed.  The novel feature of EDDIE-ARB is a constraint satisfaction feature supplementing the fitness function that enables the GP to satisfy a degree of search intensity specified as a minimum and maximum as required by the problem.  In other words, as no more than 3% of the data is likely to contain arbitrage opportunities, that became the maximum.   The minimum was specified to suit the needs of the user.
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